| 研究生: |
郭芸彤 Kuo, Yun-Tung |
|---|---|
| 論文名稱: |
HHT頻譜分析法於結構阻尼評估應用之初探 The Application of the Hilbert-Huang Transformation Spectrum Analysis for Estimating Structural Damper |
| 指導教授: |
賴啟銘
Lai, Chi-Ming |
| 共同指導教授: |
張惠雲
Chang, Heui-Yung 蘇聖中 Su, Sheng-Chung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2024 |
| 畢業學年度: | 112 |
| 語文別: | 中文 |
| 論文頁數: | 138 |
| 中文關鍵詞: | 阻尼比 、希爾伯特-黃轉換 、鋼構架建築 、案例研究分析 |
| 外文關鍵詞: | damping ratio, HHT method, steel buildings, case study analyses |
| 相關次數: | 點閱:48 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
過去對於結構阻尼比之研究所發現兩方法, 一是採對數衰減法,其是採結構之衰減曲線求取其衰減率得出阻尼比,另一則是透過傅立葉轉換得之頻率響應曲線,求其頻寬差即為其阻尼比,然而以上兩方法皆有其不適用性,對數衰減法所需之衰減曲線難以透過實際地震事件中監測得之,而傅立葉轉換則是需預設基底函數,其為不隨時間變動,只適合處理線性及穩態之訊號。而近年發展出之HHT SHM分析方法[ 1 ],乃是以希爾伯特-黃轉換為核心,其不須預設基底函數,可解決非線性及非穩態之複雜問題。
為求取最適之阻尼比估計法,又因最近研究中[ 1 ],在HHT時頻譜觀察到結構主頻並非如理論所述為一定值而是具變動之現象,本研究將分為兩階段進行,第一階段先將實務中有可能造成誤差之原因剃除,採用Etabs分析軟體建立多個單自由度模型,分別設定不同結構週期、阻尼比、地震力,提取其樓頂及基底加速度,在以HHT SHM方法進行分析轉換為時頻譜,得其放大係數後沿時間軸積分得其頻率軸之邊際譜,觀察邊際譜之峰值即為結構主頻,再採用半功率頻寬法計算其阻尼比估計,找出最適估計之區段。而後第二階段採實際案例數據分析,採同樣之方法,先使用鋼構架之振動台實驗,觀察實際阻尼比與過去理論值之差異,再分析台電大樓量測數據,進一步驗證方法,觀察實際建物中包含各種非結構材及裝修外飾材之阻尼比,探討本研究方法之實際應用可行性。
The time-varying nature of structural damped response makes it difficult to estimate the damping ratios using traditional methods. In the first part of this study, therefore, a series of time-history analyses have been conducted for single-degree-of-freedom (SDOF) structures with different periods and damping ratios, and for three sets of earthquake ground motions. One of the research purposes is to estimate damping ratios using the half-power bandwidth method together with the Hilbert-Huang Transform (HHT) method, which is suitable for analyzing nonlinear and non-stationary responses. In the second part, the damping ratios were estimated for a bare steel frame used in a shaking table test and for the Taipower Building before and after adding dampers. The other purpose is to study the damping ratios for real steel structures in comparison with the theoretical value.
The results show that for SDOF systems, the damping ratios were best estimated using the P-wave response. The P-wave travels fast, and is characterized by smaller amplitudes. These features help reflect the initial state of structural vibrations before being influenced by other seismic waves with larger amplitudes. Moreover, the damping ratio was estimated to be 3.77% and over 5% respectively for the steel bare frame and building after adding dampers. The estimated damping ratios were greater than the theoretical value of 2%. The difference was thought to result from the equipment inside, non-structural components, and external decorative materials.
[ 1 ] 蘇聖中,「結構物強震觀測資料之希爾伯特-黃結構物健康診斷方法」,國立中央大學地球科學研究所,博士論文,2015
[ 2 ] Yu, Q., Xu, D., Zhu, Y., & Guan, G. (2020). An efficient method for estimating the damping ratio of a vibration isolation system. Mechanics & Industry, 21(1), 103.
[ 3 ] Zhou, K., & Li, Q. S. (2021). Effects of time‐variant modal frequencies of high‐rise buildings on damping estimation. Earthquake Engineering & Structural Dynamics, 50(2), 394-414.
[ 4 ] Zhou, K., Li, Q. S., & Li, X. (2019). Eliminating beating effects in damping estimation of high-rise buildings. Journal of Engineering Mechanics, 145(12), 04019102.
[ 5 ] Li, Q. S., Zhou, K., & Li, X. (2020). Damping estimation of high‐rise buildings considering structural modal directions. Earthquake Engineering & Structural Dynamics, 49(6), 543-566.
[ 6 ] Zhang, Z. Y., Pan, Q., Cho, C. D., & Gao, Z. C. (2010). Identification of damping ratios of soil-structure system subjected to ambient excitation. In Advances in Environmental Geotechnics: Proceedings of the International Symposium on Geoenvironmental Engineering in Hangzhou, China, September 8–10, 2009 (pp. 492-496). Springer Berlin Heidelberg.
[ 7 ] Chopra, A. K. (2007). Dynamics of structures. Pearson Education India.
[ 8 ] 謝均岳,「應用希爾伯特-黃轉換以非線性度分析於結構健康診斷」,國立中央大學土木工程研究所,碩士論文,2017
[ 9 ] 趙偉丞,「運用雙攝影機影像進行建築物震後安全快速評估之研究」,國立臺北科技大學土木工程系土木與防災工程研究所,碩士論文,2017
[ 10 ] 台灣電力公司營建處簡報檔案,簡報日期中華民國101年7月31日,「運用創新材料、技術、工法—台電大樓主樓阻尼器耐震補強案例」
[ 11 ] Chen, G., Yang, J., Liu, Y., Kitahara, T., & Beer, M. (2023). An energy‐frequency parameter for earthquake ground motion intensity measure. Earthquake Engineering & Structural Dynamics, 52(2), 271-284.
[ 12 ] Cruz, C., & Miranda, E. (2021). Damping ratios of the first mode for the seismic analysis of buildings. Journal of Structural Engineering, 147(1), 04020300.
[ 13 ] Li, X., & Li, Q. S. (2018). Monitoring structural performance of a supertall building during 14 tropical cyclones. Journal of Structural Engineering, 144(10), 04018176.
[ 14 ] Pioldi, F., & Rizzi, E. (2018). Earthquake‐induced structural response output‐only identification by two different Operational Modal Analysis techniques. Earthquake Engineering & Structural Dynamics, 47(1), 257-264.
[ 15 ] Cruz, C., & Miranda, E. (2019). Reliability of damping ratios inferred from the seismic response of buildings. Engineering Structures, 184, 355-368.
[ 16 ] Boore, D. M. (2010). Orientation-independent, nongeometric-mean measures of seismic intensity from two horizontal components of motion. Bulletin of the Seismological Society of America, 100(4), 1830-1835.
[ 17 ] Boore, D. M., Watson-Lamprey, J., & Abrahamson, N. A. (2006). Orientation-independent measures of ground motion. Bulletin of the seismological Society of America, 96(4A), 1502-1511.
[ 18 ] Huang, N. E., Shen, Z., Long, S. R., Wu, M. C., Shih, H. H., Zheng, Q., ... & Liu, H. H. (1998). The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proceedings of the Royal Society of London. Series A: mathematical, physical and engineering sciences, 454(1971), 903-995.
[ 19 ] Peng, Z. K., Peter, W. T., & Chu, F. L. (2005). A comparison study of improved Hilbert–Huang transform and wavelet transform: Application to fault diagnosis for rolling bearing. Mechanical systems and signal processing, 19(5), 974-988.
[ 20 ] Kohrangi, M., Vamvatsikos, D., & Bazzurro, P. (2019). Pulse‐like versus non‐pulse‐like ground motion records: spectral shape comparisons and record selection strategies. Earthquake Engineering & Structural Dynamics, 48(1), 46-64.
[ 21 ] Chen, G., Beer, M., & Liu, Y. (2022). Modeling response spectrum compatible pulse-like ground motion. Mechanical Systems and Signal Processing, 177, 109177.
[ 22 ] 陳奐丞,「含近斷層效應之鋼骨抗彎接合耐震行為研究」,國立交通大學土木工程研究所,碩士論文,2019
[ 23 ] 張奕翔,「應用 HHT SHM 法於單塔脊背橋結構健康監測」,國立中央大學土木工程研究所,碩士論文,2018
[ 24 ] 張皓瑋,「改變地震大小於 HHT 結構健康監測方法之應用」,國立中央大學土木工程研究所,碩士論文,2020
[ 25 ] 謝晉瑋,「改變結構物材料參數在 HHT 結構健康監測方法之應用」 ,國立中央大學土木工程研究所,碩士論文,2020
[ 26 ] 邱群翔,「有限元素模型於希爾伯特-黃結構健康監測方法之應用 -以不同阻尼為例」,國立中央大學土木工程研究所,碩士論文,2019
[ 27 ] 李信宏,「應用不同地震於 HHT 結構健康監測方法」,國立中央大學土木工程研究所,碩士論文,2019
[ 28 ] 蔡協展,「應用希爾伯特-黃轉換之橋柱受沖刷之安全性實驗研究 」,國立中央大學土木工程研究所,碩士論文,2015
[ 29 ] 周偉庭,「應用希爾伯特-黃轉換之受震結構安全性實驗研究 」 ,國立中央大學土木工程研究所,碩士論文,2016