| 研究生: |
陳宇勝 Chen, Yu-Sheng |
|---|---|
| 論文名稱: |
不同流道對於SOFC固態氧化物燃料電池反應物濃度和速度分佈的比較及均溫性探討 Comparison of Velocity Distribution and Reactant Concentration in SOFC Solid Oxide Fuel Cells with Different Flow Channels and Discussion on Temperature Uniformity |
| 指導教授: |
趙隆山
Chao, Long-Shan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 91 |
| 中文關鍵詞: | 固態氧化物燃料電池 、均溫性 、速度分佈 、順逆流 、流道比較 |
| 外文關鍵詞: | Solid oxide fuel cell, temperature uniformity, velocity distribution, co/counter-flow, flow channel comparison |
| 相關次數: | 點閱:110 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
燃料電池為一種零汙染且具備高轉換效率的綠色能源,而其中的固態氧化物燃料電池(SOFC)的高工作溫度,使得所排出廢熱可以做熱電共生加以利用,前景備受看好。
本研究以固態氧化物燃料電池為主題,透過ANSYS FLUENT搭配繪圖軟體建立燃料電池,透過流道設計(U型平行直流流道、Z型平行直流流道、蛇形流道及棋盤式流道)及兩種流道配置,去探討流道種類及流道配置的不同,去探討溫度、氣體分佈、陰極速度分佈及陽極速度分佈等影響燃料電池的重要參數;透過模擬結果發現,改變電池內部流場的方向,觀察改變流場配置對於故態氧化物燃料電池內部溫度分佈的影響,順流及逆流下蛇形流道陰極和陽極的 ∆T 皆為最低,探討均溫性來說表現最好,而均溫性相對代表著電池性能相對較好以及能有更長的電池壽命。
此外,在同時考慮相同流道設計及參數下,蛇形流道速度分佈最均勻,流道配置上順流比逆流在氫氣濃度、氧氣濃度、速度分佈皆較逆流效果來的佳,而逆流則是在入出口 ∆T 會高於順流。
Fuel cells are a kind of green energy with zero pollution and high conversion efficiency, and the high operating temperature of solid oxide fuel cells (SOFC) makes it possible to utilize the waste heat for cogeneration, which is a promising prospect.In this study, ANSYS FLUENT was used to build a solid oxide fuel cell with the help of drawing software. Through the flow channel design ( U-type flow channel, Z-type flow channel, serpentine flow channel and tessellation flow channel ) and two flow channel configurations, the different types of flow channels and flow channel configurations were investigated to investigate the temperature, gas distribution, cathode velocity distribution and anode velocity distribution, which affect the fuel cell. The simulation results show that changing the direction of the flow field inside the cell and observing the effect of changing the flow field configuration on the internal temperature distribution of the former oxide fuel cell, the ∆T of the cathode and anode of the serpentine flow channel is the lowest in both co-flow and counter-flow, and the best performance in terms of temperature uniformity, which represents better cell performance and longer cell life. In addition, considering the same flow path design and parameters, the serpentine flow path has the most uniform velocity distribution, and the flow channel configuration is better in hydrogen concentration, oxygen concentration, and velocity distribution than the counter-flow, which has a higher inlet and outlet ∆T than the counter-flow.
[1] Hao, C., Zeng, Z., Zhao, B., Qian, Y., Zhuge, W., Wang, Y., ... & Zhang, Y. (2022). Local heat generation management for temperature gradient reduction in tubular solid oxide fuel cells. Applied Thermal Engineering, 211, 118453
[2] Lee, H. L., Han, N. G., Kim, M. S., Kim, Y. S., & Kim, D. K. (2022). Studies on the effect of flow configuration on the temperature distribution and performance in a high current density region of solid oxide fuel cell. Applied Thermal Engineering, 206, 118120.
[3] Chang, P. A., St-Pierre, J., Stumper, J., & Wetton, B. (2006). Flow distribution in proton exchange membrane fuel cell stacks. Journal of Power Sources, 162(1), 340-355.
[4] Liu, H., & Li, P. (2013). Maintaining equal operating conditions for all cells in a fuel cell stack using an external flow distributor. International journal of hydrogen energy, 38(9), 3757-3766.
[5] Tondeur, D., Fan, Y., Commenge, J. M., & Luo, L. (2011). Uniform flows in rectangular lattice networks. Chemical engineering science, 66(21), 5301-5312.
[6] Hu, G., Fan, J., Chen, S., Liu, Y., & Cen, K. (2004). Three-dimensional numerical analysis of proton exchange membrane fuel cells (PEMFCs) with conventional and interdigitated flow fields. Journal of Power Sources, 136(1), 1-9.
[7] Maharudrayya, S., Jayanti, S., and Deshpande, A. P., “Pressure Drop and Flow Distribution in Multiple Parallel-Channel Configurations Used in Proton-exchange Membrane Fuel Cell Stacks,” Journal of power sources Vol. 157, pp. 358-367 (2006).
[8] Wongchanapai, S., Iwai, H., Saito, M., & Yoshida, H. (2012). Selection of suitable operating conditions for planar anode-supported direct-internal-reforming solid-oxide fuel cell. Journal of Power Sources, 204, 14-24.
[9] Recknagle, K. P., Williford, R. E., Chick, L. A., Rector, D. R., & Khaleel, M. A. (2003). Three-dimensional thermo-fluid electrochemical modeling of planar SOFC stacks. Journal of Power Sources, 113(1), 109-114.
[10] Fardadi, M., McLarty, D. F., & Jabbari, F. (2016). Investigation of thermal control for different SOFC flow geometries. Applied Energy, 178, 43-55.
[11] Dillig, M., Leimert, J., & Karl, J. (2014). Planar high temperature heat pipes for SOFC/SOEC stack applications. Fuel Cells, 14(3), 479-488.
[12] Zeng, Z., Qian, Y., Zhang, Y., Hao, C., Dan, D., & Zhuge, W. (2020). A review of heat transfer and thermal management methods for temperature gradient reduction in solid oxide fuel cell (SOFC) stacks. Applied Energy, 280, 115899.
校內:2027-08-19公開