簡易檢索 / 詳目顯示

研究生: 陳宇勝
Chen, Yu-Sheng
論文名稱: 不同流道對於SOFC固態氧化物燃料電池反應物濃度和速度分佈的比較及均溫性探討
Comparison of Velocity Distribution and Reactant Concentration in SOFC Solid Oxide Fuel Cells with Different Flow Channels and Discussion on Temperature Uniformity
指導教授: 趙隆山
Chao, Long-Shan
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 91
中文關鍵詞: 固態氧化物燃料電池均溫性速度分佈順逆流流道比較
外文關鍵詞: Solid oxide fuel cell, temperature uniformity, velocity distribution, co/counter-flow, flow channel comparison
相關次數: 點閱:110下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 燃料電池為一種零汙染且具備高轉換效率的綠色能源,而其中的固態氧化物燃料電池(SOFC)的高工作溫度,使得所排出廢熱可以做熱電共生加以利用,前景備受看好。
    本研究以固態氧化物燃料電池為主題,透過ANSYS FLUENT搭配繪圖軟體建立燃料電池,透過流道設計(U型平行直流流道、Z型平行直流流道、蛇形流道及棋盤式流道)及兩種流道配置,去探討流道種類及流道配置的不同,去探討溫度、氣體分佈、陰極速度分佈及陽極速度分佈等影響燃料電池的重要參數;透過模擬結果發現,改變電池內部流場的方向,觀察改變流場配置對於故態氧化物燃料電池內部溫度分佈的影響,順流及逆流下蛇形流道陰極和陽極的 ∆T 皆為最低,探討均溫性來說表現最好,而均溫性相對代表著電池性能相對較好以及能有更長的電池壽命。
    此外,在同時考慮相同流道設計及參數下,蛇形流道速度分佈最均勻,流道配置上順流比逆流在氫氣濃度、氧氣濃度、速度分佈皆較逆流效果來的佳,而逆流則是在入出口 ∆T 會高於順流。

    Fuel cells are a kind of green energy with zero pollution and high conversion efficiency, and the high operating temperature of solid oxide fuel cells (SOFC) makes it possible to utilize the waste heat for cogeneration, which is a promising prospect.In this study, ANSYS FLUENT was used to build a solid oxide fuel cell with the help of drawing software. Through the flow channel design ( U-type flow channel, Z-type flow channel, serpentine flow channel and tessellation flow channel ) and two flow channel configurations, the different types of flow channels and flow channel configurations were investigated to investigate the temperature, gas distribution, cathode velocity distribution and anode velocity distribution, which affect the fuel cell. The simulation results show that changing the direction of the flow field inside the cell and observing the effect of changing the flow field configuration on the internal temperature distribution of the former oxide fuel cell, the ∆T of the cathode and anode of the serpentine flow channel is the lowest in both co-flow and counter-flow, and the best performance in terms of temperature uniformity, which represents better cell performance and longer cell life. In addition, considering the same flow path design and parameters, the serpentine flow path has the most uniform velocity distribution, and the flow channel configuration is better in hydrogen concentration, oxygen concentration, and velocity distribution than the counter-flow, which has a higher inlet and outlet ∆T than the counter-flow.

    摘要I AbstractII 誌謝 XII 目錄 XIII 表目錄 XVII 圖目錄 XVIII 符號索引 XXI 第1章 緒論 1 1.1 前言 1 1.2 燃料電池介紹 2 1.3 研究目的 5 1.4 研究動機 6 1.5 文獻回顧 7 1.5.1 流道設計文獻 7 1.5.2 流道設置文獻 10 1.5.3 熱管理文獻 11 第2章 理論分析 13 2.1 控制方程式 13 2.1.1 能量守恆定律 (law of conservation of energy) 13 2.2.2 質量及動量守恆方程式 14 2.2.3 電化學模式及濃度方程式 15 2.2 SOFC 17 2.2.1 SOFC簡述 18 2.2.2 SOFC組件需求 18 2.2.3 SOFC電池結構 20 2.2.4 SOFC原理 23 2.2.5 電解質 25 2.2.6 電導率 { Electrolyte Phase Conductivity } 27 2.3 Mesh介紹與功用 27 2.3.1 網格化 (Meshing) 27 2.3.2 網格元素形狀 31 2.3.3 Mesh質量 (Mesh Quality) 32 2.3.4 節點密度 32 2.3.5 偏度 33 2.3.6 電化學反應 36 2.4 極化分析 37 2.4.1 活性損失 37 2.4.2 歐姆損失 38 2.4.3 濃度損失 39 第3章 模組建立與模擬分析 40 3.1 幾何模型建立 40 3.2 流場模擬分析 40 3.2.1 ANSYS FLUENT 41 3.2.2 數值方法 41 3.2.3 求解器(Solver) 42 3.3 參數設置原理 42 3.3.1 搭載燃料電池及電解模組 42 3.3.2 燃料電池和附加模組 43 3.4 多重網格法 44 3.4.1 多重網格法類型 44 3.4.2 多重網格循環 45 3.5 邊界條件 48 3.6 求解方法 52 3.6.1 壓力-速度耦合 (Pressure-Velocity Coupling) 53 3.6.2 梯度離散的方法(Gradient) 55 第4章 SOFC數值描述與分析比較 57 4.1 幾何模型 57 4.1.1 燃料電池單通道幾何形狀 57 4.1.2 外部歧管 59 4.2 流場設計 61 4.2.1 平行直流流場 62 4.2.2 蛇形流場 63 4.2.3 棋盤式流場 64 4.2.4 U型& Z型平行直流流場 65 4.2.5 流場優劣 68 4.2.6 流場網格的獨立分析 68 4.3 氣體流動的方向 69 4.3.1 順流時陰極及陽極反應物濃度在不同流道之分佈比較 70 4.3.2 逆流時陰極及陽極反應物濃度在不同流道之分佈比較 71 4.3.3 流動方向對於流道影響探討 73 4.4 不同參數對於SOFC的影響 75 4.4.1 電極厚度對於SOFC影響 75 4.4.2 孔隙率對於SOFC影響 75 4.4.3 流道設計均溫性的探討 76 4.4.4 流道設計速度分佈的比較 78 4.5 連續式外部歧管流道比較 81 4.5.1 順流U型和Z型平行直流流道比較 82 4.5.2 逆流U型和Z型平行直流流道比較 84 第5章 結果與展望 87 5.1 結論 87 5.2 展望 88 參考文獻 90

    [1] Hao, C., Zeng, Z., Zhao, B., Qian, Y., Zhuge, W., Wang, Y., ... & Zhang, Y. (2022). Local heat generation management for temperature gradient reduction in tubular solid oxide fuel cells. Applied Thermal Engineering, 211, 118453
    [2] Lee, H. L., Han, N. G., Kim, M. S., Kim, Y. S., & Kim, D. K. (2022). Studies on the effect of flow configuration on the temperature distribution and performance in a high current density region of solid oxide fuel cell. Applied Thermal Engineering, 206, 118120.
    [3] Chang, P. A., St-Pierre, J., Stumper, J., & Wetton, B. (2006). Flow distribution in proton exchange membrane fuel cell stacks. Journal of Power Sources, 162(1), 340-355.
    [4] Liu, H., & Li, P. (2013). Maintaining equal operating conditions for all cells in a fuel cell stack using an external flow distributor. International journal of hydrogen energy, 38(9), 3757-3766.
    [5] Tondeur, D., Fan, Y., Commenge, J. M., & Luo, L. (2011). Uniform flows in rectangular lattice networks. Chemical engineering science, 66(21), 5301-5312.
    [6] Hu, G., Fan, J., Chen, S., Liu, Y., & Cen, K. (2004). Three-dimensional numerical analysis of proton exchange membrane fuel cells (PEMFCs) with conventional and interdigitated flow fields. Journal of Power Sources, 136(1), 1-9.
    [7] Maharudrayya, S., Jayanti, S., and Deshpande, A. P., “Pressure Drop and Flow Distribution in Multiple Parallel-Channel Configurations Used in Proton-exchange Membrane Fuel Cell Stacks,” Journal of power sources Vol. 157, pp. 358-367 (2006).
    [8] Wongchanapai, S., Iwai, H., Saito, M., & Yoshida, H. (2012). Selection of suitable operating conditions for planar anode-supported direct-internal-reforming solid-oxide fuel cell. Journal of Power Sources, 204, 14-24.
    [9] Recknagle, K. P., Williford, R. E., Chick, L. A., Rector, D. R., & Khaleel, M. A. (2003). Three-dimensional thermo-fluid electrochemical modeling of planar SOFC stacks. Journal of Power Sources, 113(1), 109-114.
    [10] Fardadi, M., McLarty, D. F., & Jabbari, F. (2016). Investigation of thermal control for different SOFC flow geometries. Applied Energy, 178, 43-55.
    [11] Dillig, M., Leimert, J., & Karl, J. (2014). Planar high temperature heat pipes for SOFC/SOEC stack applications. Fuel Cells, 14(3), 479-488.
    [12] Zeng, Z., Qian, Y., Zhang, Y., Hao, C., Dan, D., & Zhuge, W. (2020). A review of heat transfer and thermal management methods for temperature gradient reduction in solid oxide fuel cell (SOFC) stacks. Applied Energy, 280, 115899.

    無法下載圖示 校內:2027-08-19公開
    校外:2027-08-19公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE