簡易檢索 / 詳目顯示

研究生: 顏宏盛
Yen, Hung-Sheng
論文名稱: 兩段燒結Bi-Se-Te三元熱電材料整合光伏發電系統之研究
Research on the Integration of Two-Stage Sintering Bi-Se-Te Ternary Thermoelectric Materials with Photovoltaic Power Generation System
指導教授: 施士塵
Shih, Shih-Chen
共同指導教授: 林仁輝
Lin, Jen-Fin
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 121
中文關鍵詞: 碲化鉍基熱電材料火花電將燒結二段式燒結熱電優值透明導電薄膜光伏發電
外文關鍵詞: Bi2Te3-based thermoelectric materials, Spark plasma sintering(SPS), Two-stage sintering, Figure of merit, Transparent conductive films (TCF), Photovoltaic
相關次數: 點閱:65下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來所經歷的各種能源危機,影響範圍、程度只增不減,對全球發展增添了需多的不穩定因素。穩定且環保的能源供應已成為能源發展的必經之路。太陽能所帶來的能量不僅可用於光電轉換效應,熱電效應也可以將大部分被浪費的廢熱進行回收利用,甚至是鍋爐、發動機或是交通運輸工具所產生的廢熱,皆可進行有效的回收。既增加光伏打電池的發電效率,也可以將浪費的熱能進行更有效地再度利用,達到在能源發展上開源節流的目的。本論文針對以下三個部分進行研究,分別是二階段火花電漿燒結Bi2Se0.45Te2.55塊材、應用遠紅外高穿透導電薄膜於鈣鈦礦太陽能元件、光伏系統直接耦合熱電系統提升發電效率。Bi2Se0.45Te2.55塊材利用火花電漿燒結(spark plasma sintering, SPS)二階段燒結製備,經不同燒結溫度、時間、壓力條件後,探討本研究中第二次燒結ZT值最高的燒結參數,結果顯示500℃ /50 MPa /5 min,相較優異於其他參數之ZT值,燒結時間及溫度增加會讓晶界密度降低,晶界散射發生機率也減少。而運作溫度提高容易使缺陷產生,使晶界密度增加,晶界散射發生機率大幅提升,載子遷移率受限。上述兩部分皆會影響Seebeck係數、電導率、熱傳導率,從而影響功率因子和熱電優值。以共濺鍍製程沉積ITO:Zr透明導電薄膜,在ITO濺鍍功率80W、Zr濺鍍功率35W下,獲得最低的元件電阻,顯示此低溫製程之透明導電薄膜無法有效提升鈣鈦礦太陽能元件的發電效率。直接耦合光伏系統與熱電系統,因為兩系統之間的最佳發電效率溫度區間不同,且光伏電池的發電效率會隨溫度升高而降低,因此光伏系統與熱電系統直接耦合於冷端後即可有效提升發電效率。

    The Bi2Se0.45Te2.55 materials were fabricated by spark plasma sintering (SPS) in a two-step sintering process. Different sintering temperatures, times, and pressure conditions were investigated to determine the parameters that resulted in the highest ZT value in the second sintering stage. The results showed that 500°C /50 MPa /5 min resulted in an excellent ZT value compared to other parameters. Increasing the sintering time and temperature reduced the grain boundary density and the occurrence of grain boundary scattering. However, operation at higher temperatures increased the probability of defects and resulted in increased grain boundary density, which significantly increased the probability of grain boundary scattering and limited charge carrier mobility. These factors affect the Seebeck coefficient, electrical conductivity, thermal conductivity, and consequently the power factor and thermoelectric coefficient.Zirconium doped indium tin oxide (ITO:Zr) was deposited as a transparent conductive layer by a co-sputtering method. The lowest resistance was obtained at a sputtering power of ITO of 80 W and a Zr sputtering power of 35 W, indicating that this low-temperature process for transparent conductive layers does not effectively improve the power generation efficiency of perovskite solar cells.Direct coupling of photovoltaic and thermoelectric systems is challenging because they have different optimal temperature ranges for power generation efficiency. In addition, the power generation efficiency of photovoltaic cells decreases with increasing temperature. Therefore, direct coupling of photovoltaic and thermoelectric systems does not effectively improve the power generation efficiency.

    摘要 I Abstract III 目錄 X 圖目錄 XIV 第一章 緒論 1 1-1 前言 1 1-2 文獻回顧 2 1-2-1 熱電材料 2 1-2-2 提升材料熱電性能之方法 3 1-2-3 塊材材料 7 1-2-4 碲化鉍化合物簡介 10 1-2-5 碲硒化鉍化合物簡介 11 1-2-6 太陽能電池發展 12 1-2-7 透明導電薄膜 13 1-2-8 氧化銦錫 14 1-2-9 光伏熱電混和系統 14 1-3 研究動機 26 第二章 基本理論 27 2-1 熱電效應 27 2-1-1 Seebeck效應 27 2-1-2 Peltier效應 27 2-1-3 Thomson效應 28 2-1-4 熱電效應 28 2-2 熱電材料傳輸理論 29 2-2-1 電子電傳導與電子熱傳導 29 2-2-2 Seebeck效應與電子電傳導 30 2-2-3 載子遷移率與載子有效質量 30 2-2-4 聲子熱傳導與電子電傳導 31 2-3 布拉格定律(Bragg's law) 31 2-4 晶粒大小理論 32 2-5 霍爾量測原理 32 2-6 太陽能電池量測參數與原理 34 2-7 熱電光伏發電系統整合 35 第三章 實驗方法與設備 42 3-1 Bi-Se-Te粉末冶金製程之粉末製作 42 3-1-1 Bi-Se-Te粉末球磨合金化 42 3-1-2 球磨時間參數調整 43 3-1-3 粉末粒徑量測 43 3-2 二段式火花電漿燒結Bi-Se-Te熱電材料 43 3-2-1火花電漿燒結(spark plasma sintering, SPS) 43 3-2-2 燒結溫度、壓力、時間調整 44 3-3 熱電性值量測 44 3-3-1 比熱性質量測 44 3-3-2 熱傳導性質量測 45 3-3-3 Seebeck係數量測 45 3-3-4電導性質量測 46 3-3-5 X光繞射儀 46 3-3-6 微結構觀察 46 3-4鈣鈦礦太陽能元件製作 47 3-4-1 溶液工程 47 3-4-2 共濺鍍沉積 48 3-4-3 測量元件效率 48 3-5 熱電光伏系統整合 48 3-5-1 直接耦合 49 3-5-2 模擬光伏系統置於熱端 49 3-5-3 模擬光伏系統置於冷端 49 3-6 實驗設備 49 第四章 結果與討論 60 4-1 Bi-Se-Te粉末製作 60 4-1-1機械合金化時間調整 60 4-1-2粉末結構與結晶分析 60 4-2 第二次火花電漿燒結 66 4-2-1晶體結構與結晶分析 66 4-2-2電導性質量測 71 4-2-3 Seebeck係數量測 75 4-2-4熱傳導性質量測 80 4-2-5 熱電優值(ZT) 84 4-3 第一次與第二次燒結微結構觀察與比較 87 4-3-1晶體結構與熱電性質分析 87 4-3-2熱電性質分析 91 4-3-3 SEM分析 95 4-3-4 TEM分析 98 4-4鈣鈦礦太陽能元件效率量測 102 4-4-1 共濺鍍ITO:Zr透明電極元件之光學特性分析 102 4-5熱電光伏混和系統 105 4-5-1 PV-TIM-TEG系統 105 4-5-2 PV-TEG系統效率評估 109 第五章 結論與未來展望 111 5-1 結論 111 5-2 未來展望 112 第六章 參考文獻 114

    [1] G.W. Crabtree, N.S. Lewis, Solar energy conversion, Physics today, 60 (2007) 37-42.
    [2] J.R. Sootsman, D.Y. Chung, M.G. Kanatzidis, New and old concepts in thermoelectric materials, Angewandte Chemie International Edition, 48 (2009) 8616-8639.
    [3] D.M. Rowe, Thermoelectrics handbook: macro to nano, CRC press2018.
    [4] T.M. Tritt, H. Böttner, L. Chen, Thermoelectrics: Direct solar thermal energy conversion, MRS bulletin, 33 (2008) 366-368.
    [5] K. Uehara, S.T. John, Calculations of transport properties with the linearized augmented plane-wave method, Physical Review B, 61 (2000) 1639.
    [6] J.P. Heremans, V. Jovovic, E.S. Toberer, A. Saramat, K. Kurosaki, A. Charoenphakdee, S. Yamanaka, G.J. Snyder, Enhancement of thermoelectric efficiency in PbTe by distortion of the electronic density of states, Science, 321 (2008) 554-557.
    [7] D.M. Rowe, CRC handbook of thermoelectrics, CRC press2018.
    [8] H. Liu, X. Shi, F. Xu, L. Zhang, W. Zhang, L. Chen, Q. Li, C. Uher, T. Day, G.J. Snyder, Copper ion liquid-like thermoelectrics, Nature materials, 11 (2012) 422-425.
    [9] K. Kishimoto, T. Koyanagi, Preparation of sintered degenerate n-type PbTe with a small grain size and its thermoelectric properties, Journal of Applied Physics, 92 (2002) 2544-2549.
    [10] K. Kishimoto, M. Tsukamoto, T. Koyanagi, Temperature dependence of the Seebeck coefficient and the potential barrier scattering of n-type PbTe films prepared on heated glass substrates by rf sputtering, Journal of Applied Physics, 92 (2002) 5331-5339.
    [11] C.-H. Kuo, H.-S. Chien, C.-S. Hwang, Y.-W. Chou, M.-S. Jeng, M. Yoshimura, Thermoelectric properties of fine-grained PbTe bulk materials fabricated by cryomilling and spark plasma sintering, Materials transactions, 52 (2011) 795-801.
    [12] K. Kishimoto, K. Yamamoto, T. Koyanagi, Influences of potential barrier scattering on the thermoelectric properties of sintered n-type PbTe with a small grain size, Japanese journal of applied physics, 42 (2003) 501.
    [13] D.-K. Ko, Y. Kang, C.B. Murray, Enhanced thermopower via carrier energy filtering in solution-processable Pt–Sb2Te3 nanocomposites, Nano letters, 11 (2011) 2841-2844.
    [14] Y. Dou, X. Qin, D. Li, L. Li, T. Zou, Q. Wang, Enhanced thermopower and thermoelectric performance through energy filtering of carriers in (Bi2Te3) 0.2 (Sb2Te3) 0.8 bulk alloy embedded with amorphous SiO2 nanoparticles, Journal of Applied Physics, 114 (2013).
    [15] T. Zou, X. Qin, D. Li, B. Ren, G. Sun, Y. Dou, Y. Li, L. Li, J. Zhang, H. Xin, Enhanced thermoelectric performance via carrier energy filtering effect in β-Zn4Sb3 alloy bulk embedded with (Bi2Te3) 0.2 (Sb2Te3) 0.8, Journal of Applied Physics, 115 (2014).
    [16] Y. Li, D. Li, X. Qin, X. Yang, Y. Liu, J. Zhang, Y. Dou, C. Song, H. Xin, Enhanced thermoelectric performance through carrier scattering at heterojunction potentials in BiSbTe based composites with Cu 3 SbSe 4 nanoinclusions, Journal of Materials Chemistry C, 3 (2015) 7045-7052.
    [17] C.-W. Nan, R. Birringer, Determining the Kapitza resistance and the thermal conductivity of polycrystals: A simple model, Physical review B, 57 (1998) 8264.
    [18] Q. Jiang, J. Yang, J. Xin, Z. Zhou, D. Zhang, H. Yan, Carriers concentration tailoring and phonon scattering from n-type zinc oxide (ZnO) nanoinclusion in p-and n-type bismuth telluride (Bi2Te3): Leading to ultra low thermal conductivity and excellent thermoelectric properties, Journal of Alloys and Compounds, 694 (2017) 864-868.
    [19] J. Li, Q. Tan, J.F. Li, D.W. Liu, F. Li, Z.Y. Li, M. Zou, K. Wang, BiSbTe‐based nanocomposites with high ZT: the effect of SiC nanodispersion on thermoelectric properties, Advanced Functional Materials, 23 (2013) 4317-4323.
    [20] Z. He, C. Stiewe, D. Platzek, G. Karpinski, E. Müller, S. Li, M. Toprak, M. Muhammed, Effect of ceramic dispersion on thermoelectric properties of nano-ZrO2∕ CoSb3 composites, Journal of Applied Physics, 101 (2007).
    [21] T. Harman, P. Taylor, M. Walsh, B. LaForge, Quantum dot superlattice thermoelectric materials and devices, science, 297 (2002) 2229-2232.
    [22] R. Venkatasubramanian, E. Siivola, T. Colpitts, B. O'quinn, Thin-film thermoelectric devices with high room-temperature figures of merit, Nature, 413 (2001) 597-602.
    [23] 謝豐任, 碲化鉍基複合粉體之製備及其塊材熱電性質之研究, 材料科學及工程學系, 國立成功大學, 2017.
    [24] C. Uher, Materials aspect of thermoelectricity, CRC press2016.
    [25] M. Akasaka, T. Iida, A. Matsumoto, K. Yamanaka, Y. Takanashi, T. Imai, N. Hamada, The thermoelectric properties of bulk crystalline n-and p-type Mg2Si prepared by the vertical Bridgman method, Journal of Applied Physics, 104 (2008).
    [26] Z. Xu, L. Hu, P. Ying, X. Zhao, T. Zhu, Enhanced thermoelectric and mechanical properties of zone melted p-type (Bi, Sb) 2Te3 thermoelectric materials by hot deformation, Acta Materialia, 84 (2015) 385-392.
    [27] A. Saramat, G. Svensson, A. Palmqvist, C. Stiewe, E. Müller, D. Platzek, S. Williams, D. Rowe, J. Bryan, G. Stucky, Large thermoelectric figure of merit at high temperature in Czochralski-grown clathrate Ba8Ga16Ge30, Journal of Applied Physics, 99 (2006).
    [28] R. Cope, A. Penn, The powder metallurgy of n-type Bi 2 Te 2.55 Se 0.45 thermoelectric material, Journal of Materials Science, 3 (1968) 103-109.
    [29] Y. Gelbstein, Z. Dashevsky, M. Dariel, High performance n-type PbTe-based materials for thermoelectric applications, Physica B: Condensed Matter, 363 (2005) 196-205.
    [30] H. Cheng, X. Xu, H. Hng, J. Ma, Characterization of Al-doped ZnO thermoelectric materials prepared by RF plasma powder processing and hot press sintering, Ceramics International, 35 (2009) 3067-3072.
    [31] M. Tokita, Mechanism of spark plasma sintering, Proceeding of the International Symposium on Microwave, Plasma and Thermochemical Processing of Advanced Materials, 1997, pp. 69-76.
    [32] X.H. Wang, P.L. Chen, I.W. Chen, Two‐step sintering of ceramics with constant grain‐size, I. Y2O3, Journal of the American Ceramic society, 89 (2006) 431-437.
    [33] Y. Pan, Y. Qiu, I. Witting, L. Zhang, C. Fu, J.-W. Li, Y. Huang, F.-H. Sun, J. He, G.J. Snyder, Synergistic modulation of mobility and thermal conductivity in (Bi, Sb) 2 Te 3 towards high thermoelectric performance, Energy & Environmental Science, 12 (2019) 624-630.
    [34] W.R. Matizamhuka, Fabrication of fine-grained functional ceramics by two-step sintering or Spark Plasma Sintering (SPS), Design and Manufacturing, IntechOpen2019.
    [35] G. Wang, T. Cagin, Electronic structure of the thermoelectric materials Bi 2 Te 3 and Sb 2 Te 3 from first-principles calculations, Physical Review B, 76 (2007) 075201.
    [36] S. Sugihara, S. Kawashima, I. Yonekura, H. Suzuki, R. Sekine, Doping effects on the electronic structures of Bi/sub 2/Te/sub 3/and thermoelectric property, XVI ICT'97. Proceedings ICT'97. 16th International Conference on Thermoelectrics (Cat. No. 97TH8291), IEEE, 1997, pp. 63-67.
    [37] G.S. Hegde, A. Prabhu, M. Chattopadhyay, Improved electrical conductivity and power factor in Sn and Se co-doped melt-grown Bi2Te3 single crystal, Journal of Materials Science: Materials in Electronics, 32 (2021) 24871-24888.
    [38] M. Zhitinskaya, S. Nemov, T. Svechnikova, Interaction of electrical active intrinsic defects in Sn-doping Bi2Te3, Materials Science in Semiconductor Processing, 6 (2003) 449-452.
    [39] T.S. Oh, D.-B. Hyun, N. Kolomoets, Thermoelectric properties of the hot-pressed (Bi, Sb) 2 (Te, Se) 3 alloys, Scripta materialia, 42 (2000) 849-854.
    [40] L.M. Fraas, L.M. Fraas, History of solar cell development, Low-cost solar electric power, (2014) 1-12.
    [41] D.E. Carlson, C.R. Wronski, Amorphous silicon solar cell, Applied Physics Letters, 28 (1976) 671-673.
    [42] A.W. Blakers, A. Wang, A.M. Milne, J. Zhao, M.A. Green, 22.8% efficient silicon solar cell, Applied Physics Letters, 55 (1989) 1363-1365.
    [43] P. Verlinden, W. Deng, X. Zhang, Y. Yang, J. Xu, Y. Shu, P. Quan, J. Sheng, S. Zhang, J. Bao, Strategy, development and mass production of high-efficiency crystalline Si PV modules, Paper 4sMoO, 1 (2014).
    [44] F. Solar, First Solar sets world record for CdTe solar cell efficiency, Press Release, February, (2014).
    [45] B.M. Kayes, H. Nie, R. Twist, S.G. Spruytte, F. Reinhardt, I.C. Kizilyalli, G.S. Higashi, 27.6% conversion efficiency, a new record for single-junction solar cells under 1 sun illumination, 2011 37th IEEE Photovoltaic Specialists Conference, IEEE, 2011, pp. 000004-000008.
    [46] P. Chiu, D. Law, R. Woo, S. Singer, W. Hong, A. Zakaria, J. Boisvert, S. Mesropian, R. King, N. Karam, Continued progress on direct bonded 5J space and terrestrial cells, Proc. 40th IEEE PVSC, (2014).
    [47] K. Sasaki, T. Agui, K. Nakaido, N. Takahashi, R. Onitsuka, T. Takamoto, Development of InGaP/GaAs/InGaAs inverted triple junction concentrator solar cells, AIP conference proceedings, American Institute of Physics, 2013, pp. 22-25.
    [48] R. Komiya, A. Fukui, N. Murofushi, N. Koide, R. Yamanaka, H. Katayama, Improvement of the conversion efficiency of a monolithic type dye-sensitized solar cell module, Technical Digest, 21st International Photovoltaic Science and Engineering Conference, 2011.
    [49] P. Peumans, S. Forrest, Very-high-efficiency double-heterostructure copper phthalocyanine/C 60 photovoltaic cells, Applied Physics Letters, 79 (2001) 126-128.
    [50] J. Werner, C.-H. Weng, A. Walter, L. Fesquet, J.P. Seif, S. De Wolf, B. Niesen, C. Ballif, Efficient monolithic perovskite/silicon tandem solar cell with cell area> 1 cm2, The journal of physical chemistry letters, 7 (2016) 161-166.
    [51] T. Koida, H. Fujiwara, M. Kondo, Hydrogen-doped In2O3 as high-mobility transparent conductive oxide, Japanese journal of applied physics, 46 (2007) L685.
    [52] T. Gessert, J. Burst, X. Li, M. Scott, T. Coutts, Advantages of transparent conducting oxide thin films with controlled permittivity for thin film photovoltaic solar cells, Thin Solid Films, 519 (2011) 7146-7148.
    [53] Y.-T. Li, D.-T. Chen, C.-F. Han, J.-F. Lin, Effect of the addition of zirconium on the electrical, optical, and mechanical properties and microstructure of ITO thin films, Vacuum, 183 (2021) 109844.
    [54] G. Rupprecht, Untersuchungen der elektrischen und lichtelektrischen Leitfähigkeit dünner Indiumoxydschichten, Zeitschrift für Physik, 139 (1954) 504-517.
    [55] M. Quaas, C. Eggs, H. Wulff, Structural studies of ITO thin films with the Rietveld method, Thin Solid Films, 332 (1998) 277-281.
    [56] 楊志豪, 雙靶射頻磁控濺鍍系統製備氧化銦錫薄膜摻雜錫,鈦及鉻之性質研究, 材料科學及工程學系, 國立成功大學, 2008.
    [57] H.R. Fallah, M. Ghasemi, A. Hassanzadeh, H. Steki, The effect of deposition rate on electrical, optical and structural properties of tin-doped indium oxide (ITO) films on glass at low substrate temperature, Physica B: Condensed Matter, 373 (2006) 274-279.
    [58] 陳典廷, 使用高介電常數之鋯材料提高透明導電薄膜在光電特性、顯微結構與材料機械性質之研究, 機械工程學系, 國立成功大學, 2020.
    [59] A. Imenes, D. Mills, Spectral beam splitting technology for increased conversion efficiency in solar concentrating systems: a review, Solar energy materials and solar cells, 84 (2004) 19-69.
    [60] F. Grubišić-Čabo, S. Nižetić, T. Giuseppe Marco, Photovoltaic panels: A review of the cooling techniques, Transactions of FAMENA, 40 (2016) 63-74.
    [61] G. Kidegho, F. Njoka, C. Muriithi, R. Kinyua, Evaluation of thermal interface materials in mediating PV cell temperature mismatch in PV–TEG power generation, Energy Reports, 7 (2021) 1636-1650.
    [62] G. Moore, W. Peterson, Solar PV-thermoelectric generator hybrid system: case studies, 10th International Telecommunications Energy Conference, IEEE, 1988, pp. 308-311.
    [63] D. Kraemer, L. Hu, A. Muto, X. Chen, G. Chen, M. Chiesa, Photovoltaic-thermoelectric hybrid systems: A general optimization methodology, Applied Physics Letters, 92 (2008).
    [64] Z. Yang, W. Li, X. Chen, S. Su, G. Lin, J. Chen, Maximum efficiency and parametric optimum selection of a concentrated solar spectrum splitting photovoltaic cell-thermoelectric generator system, Energy Conversion and Management, 174 (2018) 65-71.
    [65] W. Van Sark, Feasibility of photovoltaic–thermoelectric hybrid modules, Applied Energy, 88 (2011) 2785-2790.
    [66] E. Yin, Q. Li, Y. Xuan, A novel optimal design method for concentration spectrum splitting photovoltaic–thermoelectric hybrid system, Energy, 163 (2018) 519-532.
    [67] G. Contento, B. Lorenzi, A. Rizzo, D. Narducci, Efficiency enhancement of a-Si and CZTS solar cells using different thermoelectric hybridization strategies, Energy, 131 (2017) 230-238.
    [68] C. Babu, P. Ponnambalam, The role of thermoelectric generators in the hybrid PV/T systems: A review, Energy conversion and management, 151 (2017) 368-385.
    [69] A. Virtuani, D. Pavanello, G. Friesen, Overview of temperature coefficients of different thin film photovoltaic technologies, 25th European photovoltaic solar energy conference and exhibition/5th World conference on photovoltaic energy conversion, 2010, pp. 3.83.
    [70] M. Fisac, F.X. Villasevil, A.M. López, High-efficiency photovoltaic technology including thermoelectric generation, Journal of power sources, 252 (2014) 264-269.
    [71] D. Li, J. Li, J. Li, Y. Wang, J. Zhang, X. Qin, Y. Cao, Y. Li, G. Tang, High thermoelectric performance of n-type Bi 2 Te 2.7 Se 0.3 via nanostructure engineering, Journal of Materials Chemistry A, 6 (2018) 9642-9649.
    [72] J.W. Xiao, L. Liu, D. Zhang, N. De Marco, J.W. Lee, O. Lin, Q. Chen, Y. Yang, The emergence of the mixed perovskites and their applications as solar cells, Advanced Energy Materials, 7 (2017) 1700491.
    [73] D. Rowe, Thermoelectrics handbook: macro to nano. CRC Taylor & Francis, Boca Raton, (2006).
    [74] G.J. Snyder, E.S. Toberer, Complex thermoelectric materials, Nature materials, 7 (2008) 105-114.
    [75] W. Yim, F. Rosi, Compound tellurides and their alloys for peltier cooling—A review, Solid-state electronics, 15 (1972) 1121-1140.
    [76] H. Wang, J.-F. Li, M. Zou, T. Sui, Synthesis and transport property of AgSbTe2 as a promising thermoelectric compound, Applied Physics Letters, 93 (2008).
    [77] J. Cui, H. Xue, W. Xiu, L. Mao, P. Ying, L. Jiang, Crystal structure analysis and thermoelectric properties of p-type pseudo-binary (Al2Te3) x–(Bi0. 5Sb1. 5Te3) 1− x (x= 0∼ 0.2) alloys prepared by spark plasma sintering, Journal of alloys and compounds, 460 (2008) 426-431.
    [78] D.-H. Kim, T. Mitani, Thermoelectric properties of fine-grained Bi2Te3 alloys, Journal of Alloys and Compounds, 399 (2005) 14-19.
    [79] M. Takashiri, K. Miyazaki, S. Tanaka, J. Kurosaki, D. Nagai, H. Tsukamoto, Effect of grain size on thermoelectric properties of n-type nanocrystalline bismuth-telluride based thin films, Journal of Applied Physics, 104 (2008).
    [80] J. Kacher, C. Landon, B.L. Adams, D. Fullwood, Bragg's Law diffraction simulations for electron backscatter diffraction analysis, Ultramicroscopy, 109 (2009) 1148-1156.
    [81] R.N. Chauhan, C. Singh, R. Anand, J. Kumar, Effect of sheet resistance and morphology of ITO thin films on polymer solar cell characteristics, International Journal of Photoenergy, 2012 (2012).
    [82] R.S. Popovic, Hall effect devices, CRC Press2003.
    [83] 彭玠中, 濺鍍銦鋅氧化物薄膜應用於鈣鈦礦太陽能電池透明電極之研究, 光電科學與工程學系, 國立成功大學, 2017.
    [84] Y. Deng, W. Zhu, Y. Wang, Y. Shi, Enhanced performance of solar-driven photovoltaic–thermoelectric hybrid system in an integrated design, Solar energy, 88 (2013) 182-191.
    [85] D. Narducci, P. Bermel, B. Lorenzi, N. Wang, K. Yazawa, Hybrid and fully thermoelectric solar harvesting, Springer2018.
    [86] 邱建豪, Bi-Sb-Te熱電材料之擴散特性研究, 材料科學工程學系, 國立清華大學, 2011.
    [87] J.-T. Chen, C.-S. Hsu, Conjugated polymer nanostructures for organic solar cell applications, Polymer Chemistry, 2 (2011) 2707-2722.
    [88] J. Wu, C. Liu, M. Hu, X. Deng, W. Tan, Y. Tian, B. Xu, Polystyrene with a methoxytriphenylamine-conjugated-thiophene moiety side-chain as a dopant-free hole-transporting material for perovskite solar cells, Journal of Materials Chemistry A, 6 (2018) 13123-13132.
    [89] K. Hasezaki, M. Nishimura, M. Umata, H. Tsukuda, M. Araoka, Mechanical alloying of BiTe and BiSbTe thermoelectric materials, Materials transactions, JIM, 35 (1994) 428-432.
    [90] A.K. Zak, W.A. Majid, M.E. Abrishami, R. Yousefi, X-ray analysis of ZnO nanoparticles by Williamson–Hall and size–strain plot methods, Solid State Sciences, 13 (2011) 251-256.
    [91] L. Zhao, B.-P. Zhang, J.-F. Li, H. Zhang, W. Liu, Enhanced thermoelectric and mechanical properties in textured n-type Bi2Te3 prepared by spark plasma sintering, Solid State Sciences, 10 (2008) 651-658.
    [92] J. Son, M. Oh, B. Kim, S. Park, B. Min, M. Kim, H. Lee, Effect of ball milling time on the thermoelectric properties of p-type (Bi, Sb) 2Te3, Journal of alloys and compounds, 566 (2013) 168-174.
    [93] M.-P. Lu, C.-N. Liao, Mechanical and thermal processing effects on crystal defects and thermoelectric transport properties of Bi2 (Se, Te) 3 compounds, Journal of alloys and compounds, 571 (2013) 178-182.
    [94] L. Hu, H. Gao, X. Liu, H. Xie, J. Shen, T. Zhu, X. Zhao, Enhancement in thermoelectric performance of bismuth telluride based alloys by multi-scale microstructural effects, Journal of Materials Chemistry, 22 (2012) 16484-16490.
    [95] C.-H. Kuo, C.-S. Hwang, M.-S. Jeng, W.-S. Su, Y.-W. Chou, J.-R. Ku, Thermoelectric transport properties of bismuth telluride bulk materials fabricated by ball milling and spark plasma sintering, Journal of Alloys and Compounds, 496 (2010) 687-690.
    [96] Y. Pan, T.-R. Wei, Q. Cao, J.-F. Li, Mechanically enhanced p-and n-type Bi2Te3-based thermoelectric materials reprocessed from commercial ingots by ball milling and spark plasma sintering, Materials Science and Engineering: B, 197 (2015) 75-81.
    [97] X.D. Liu, S.H. Lee, Y.H. Park, Formation of the Te-Rich Phase in the (Bi1-xSbx) 2Te3 Alloys Prepared by MA-PDS Process, Journal of Metastable and Nanocrystalline Materials, 15 (2003) 485-490.
    [98] S. Seo, K. Lee, Y. Jeong, M.-W. Oh, B. Yoo, Method of efficient Ag doping for Fermi level tuning of thermoelectric Bi0. 5Sb1. 5Te3 alloys using a chemical displacement reaction, The Journal of Physical Chemistry C, 119 (2015) 18038-18045.
    [99] I. Cohen, M. Kaller, G. Komisarchik, D. Fuks, Y. Gelbstein, Enhancement of the thermoelectric properties of n-type PbTe by Na and Cl co-doping, Journal of Materials Chemistry C, 3 (2015) 9559-9564.
    [100] H.S. Kim, W. Liu, G. Chen, C.-W. Chu, Z. Ren, Relationship between thermoelectric figure of merit and energy conversion efficiency, Proceedings of the National Academy of Sciences, 112 (2015) 8205-8210.
    [101] 張昌碩, 雷射拋光與誘發織構技術應用於 SKD61 模具鋼表面粗糙度、微結構、機械性質、磨潤性質之影響, 機械工程學系, 國立成功大學, 2022.
    [102] G. Frank, H. Köstlin, Electrical properties and defect model of tin-doped indium oxide layers, Applied Physics A, 27 (1982) 197-206.
    [103] N. Nadaud, N. Lequeux, M. Nanot, J. Jove, T. Roisnel, Structural studies of tin-doped indium oxide (ITO) and In4Sn3O12, Journal of Solid State Chemistry, 135 (1998) 140-148.
    [104] D. Atsu, A. Dhaundiyal, Effect of ambient parameters on the temperature distribution of photovoltaic (PV) modules, Resources, 8 (2019) 107.
    [105] C. Ferrara, D. Philipp, Why do PV modules fail?, Energy Procedia, 15 (2012) 379-387.

    無法下載圖示 校內:2028-08-01公開
    校外:2028-08-01公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE