| 研究生: |
陳子晴 Chen, Zi-Qing |
|---|---|
| 論文名稱: |
自走車覆蓋演算法與循軌控制之整合與開發 Integration and Development of Coverage Path Planning and Trajectory Tracking Control for an Automobile |
| 指導教授: |
陳介力
Chen, Chieh-Li |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2017 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 64 |
| 中文關鍵詞: | 自走車 、雙輪驅動 、覆蓋路徑規劃 、循軌控制 |
| 外文關鍵詞: | automobile, two-wheeled differential control, coverage path planning, tracking |
| 相關次數: | 點閱:82 下載:12 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在台灣農田面積小且零散分布,因此農業型態為勞力密集型。近年來,農業勞動力人口驟減,農業人口老化,農業器具例如割草機、耕田機,其自動化及智慧化是未來的趨勢。而現今室外籃球場、棒球場、網球場的整地也是人為推動機器進行整地工作。以上所述情境有一大共通點為:他們均為室外空曠、少障礙物的環境,並且在人為操控機械的情形,完成行走一個覆蓋區域的路徑。本文將發展此類型的自動化智慧載具代替人類的工作,將有助於大量減少進行這些工作的時間以及體力。
為完成上述情境,本文完成了覆蓋路徑演算法的開發與模擬,並且設計載具的循軌控制系統,使雙輪驅動的自走車能夠依循期望的路徑行走。其中,覆蓋路徑規劃方法分為全域路徑規劃以及區域性即時避障的規劃,由於本文的場景屬於空曠障礙物單純的室外場地,全域的路徑規劃中採用策略性模板的方法完成,區域性避障的路徑規劃可使載具避開地圖建模時,未被偵測的障礙物,其使用了圖形膨脹的方法找到障礙物邊緣,並沿邊閃過障礙物。接著,結合全域與區域的路徑規劃演算法,使得載具更有彈性也更有完成工作的能力。循軌控制系統設計的部分,首先利用非均勻有理B樣條曲線(Non-Uniform Rational B-Splines, NURBS)規劃一個速度上平順的控制指令,再利用PID控制器完成循軌的控制。接著,將以上利用感測器RTK GPS模組完成系統整合與實作。
The aim of this paper is to design a coverage path planning algorithm and integrate it with an unmanned outdoor ground vehicle that can automatically go through a desired path. As the farmland is small and scattered in Taiwan, we have a labor-intensive agriculture. In recent years, however, the agricultural labor population has been reducing and aging since few young people want to work in this field. Therefore, developing automated intelligent equipments, like lawn mower, tiller, etc, is very important. The aim of this paper can not only fit the scenarios mentioned above, but also fits situations like organizing outdoor basketball courts, baseball field and tennis courts.
The achievement of this paper is that it developed a coverage path planning algorithm and designed a tracking control system that allows the two-wheeled differential vehicle to pass through desired path points in an outdoor environment based on GPS sensors.
Barbash, G. I., & Glied, S. A. (2010). New technology and health care costs—the case of robot-assisted surgery. New England Journal of Medicine, 363(8), 701-704.
Biswas, J., & Veloso, M. (2010). Wifi localization and navigation for autonomous indoor mobile robots. Paper presented at the Robotics and Automation (ICRA), 2010 IEEE International Conference on.
Caron, F., Duflos, E., Pomorski, D., & Vanheeghe, P. (2006). GPS/IMU data fusion using multisensor Kalman filtering: introduction of contextual aspects. Information fusion, 7(2), 221-230.
Chen, J. Y. (2010). UAV-guided navigation for ground robot tele-operation in a military reconnaissance environment. Ergonomics, 53(8), 940-950.
Choset, H. (2000). Coverage of known spaces: The boustrophedon cellular decomposition. Autonomous Robots, 9(3), 247-253.
De Carvalho, R. N., Vidal, H., Vieira, P., & Ribeiro, M. (1997). Complete coverage path planning and guidance for cleaning robots. Paper presented at the Industrial Electronics, 1997. ISIE'97., Proceedings of the IEEE International Symposium on.
Dugarjav, B., Lee, S.-G., Kim, D., Kim, J. H., & Chong, N. Y. (2013). Scan matching online cell decomposition for coverage path planning in an unknown environment. International journal of precision engineering and manufacturing, 14(9), 1551-1558.
Fu, L., Sun, D., & Rilett, L. R. (2006). Heuristic shortest path algorithms for transportation applications: state of the art. Computers & Operations Research, 33(11), 3324-3343.
Galceran, E., & Carreras, M. (2013). A survey on coverage path planning for robotics. Robotics and Autonomous systems, 61(12), 1258-1276.
Hofner, C., & Schmidt, G. (1994). Path planning and guidance techniques for an autonomous mobile cleaning robot. Paper presented at the Intelligent Robots and Systems' 94.'Advanced Robotic Systems and the Real World', IROS'94. Proceedings of the IEEE/RSJ/GI International Conference on.
Jain, A. K. (1989). Fundamentals of digital image processing: Englewood Cliffs, NJ: Prentice Hall.
Kim, S. J., & Kim, B. K. (2013). Dynamic ultrasonic hybrid localization system for indoor mobile robots. IEEE Transactions on Industrial Electronics, 60(10), 4562-4573.
Kimura, I., & Tadano, J. (1988). Guide and carry robot for hospital use. Advanced robotics, 3(3), 213-220.
Koh, K. C., & Cho, H. S. (1999). A smooth path tracking algorithm for wheeled mobile robots with dynamic constraints. Journal of Intelligent and Robotic Systems, 24(4), 367-385.
Lehtola, V. V., Virtanen, J.-P., Vaaja, M. T., Hyyppä, H., & Nüchter, A. (2016). Localization of a mobile laser scanner via dimensional reduction. ISPRS Journal of Photogrammetry and Remote Sensing, 121, 48-59.
Nitulescu, M. (2008). Theoretical aspects in wheeled mobile robot control. Paper presented at the Automation, Quality and Testing, Robotics, 2008. AQTR 2008. IEEE International Conference on.
Reister, D. B., & Pin, F. G. (1994). Time-optimal trajectories for mobile robots with two independently driven wheels. The International Journal of Robotics Research, 13(1), 38-54.
Takasu, T., & Yasuda, A. (2009). Development of the low-cost RTK-GPS receiver with an open source program package RTKLIB. Paper presented at the International symposium on GPS/GNSS.
Wang, T., Wu, Y., Liang, J., Han, C., Chen, J., & Zhao, Q. (2015). Analysis and experimental kinematics of a skid-steering wheeled robot based on a laser scanner sensor. Sensors, 15(5), 9681-9702.
Whishaw, I. Q., Hines, D. J., & Wallace, D. G. (2001). Dead reckoning (path integration) requires the hippocampal formation: evidence from spontaneous exploration and spatial learning tasks in light (allothetic) and dark (idiothetic) tests. Behavioural brain research, 127(1-2), 49-69.
Yakoubi, M. A., & Laskri, M. T. (2016). The path planning of cleaner robot for coverage region using genetic algorithms. Journal of Innovation in Digital Ecosystems, 3(1), 37-43.
Yakoubi, M. A., Laskri, M. T., & Zennir, M. N. (2016). The complete coverage for the vacuum cleaner robot using pulse-coupled neural network in dynamic environments. Journal of Ambient Intelligence and Smart Environments, 8(6), 603-617.
Yang, S. X., & Luo, C. (2004). A neural network approach to complete coverage path planning. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 34(1), 718-724.
张玉坤, & 刘伟. (2016). 扫地机器人是怎么做路径规划的. Retrieved from https://www.leiphone.com/news/201606/p4rtD88yiYVQT6F9.html
林育正. (2012). 適應性區間第二類模糊滑動控制器應用於自走車路徑追蹤. 臺灣師範大學工業教育學系學位論文, 1-65.