| 研究生: |
陳奕甫 Chen, Yi-Fu |
|---|---|
| 論文名稱: |
變溫成長五苯環主動層對雙載子有機薄膜電晶體的電性影響研究 Correlation of growth of pentacene films at various temperature conditions to ambipolar thin-film transistors characteristics |
| 指導教授: |
鄭弘隆
Cheng, Horng-Long |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Photonics |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 中文 |
| 論文頁數: | 69 |
| 中文關鍵詞: | 有機半導體 、雙極性傳輸 、五苯環 、界面缺陷 |
| 外文關鍵詞: | organic semiconductor, field-effect transistors, pentacene, Raman spectroscopy |
| 相關次數: | 點閱:112 下載:12 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文研究熱蒸鍍(PVD)主動層時,對待蒸鍍基板做加溫處理,對其有機薄膜電晶體的電特性影響,並探討造成其電性變化的原因。
本研究中所使用的主動層材料為五苯環素(Pentacene),此材料具有雙極性傳輸特性,可做為P型或N型電晶體,而所使用的介電層則有PMMA以及PVNP兩種材料,分別配成重量百分濃度為5%、1%及0.5%的溶液旋轉塗佈於基板上,實驗中發現,當蒸鍍時基板加熱到60℃時,相較於未加熱機板蒸鍍之元件,其P型電性有提升的現象,然而N型電性卻下降,對此現象將分為兩部份去分析:主動層與介電層介面的影響以及主動層本身的影響。
界面分析方面使用的接觸角的量測計算介電層之表面能,並分析導納,計算介面之缺陷密度,在表面能的計算中發現,當介電層加熱後其表面能中極性項會上升,此項影響會造成主動層傳遞電子的缺陷增加,此項結果也與缺陷密度計算結果吻合。
主動層分析則是使用拉曼光譜分析與原子力顯微鏡量測表面,拉曼光譜的結果顯示加熱會造成其電子傳遞相關的結構均勻性下降,因此導致其N型電性下降,而與電洞傳遞相關的結構均性會提升,也因此P型操作的電性表現會提升,原子力顯微鏡的結果發現經過加溫基板蒸鍍後結晶的邊界會增加,因此不利於電子的傳遞。
We investigated the effects of substrate temperature on the ambipolar electrical characteristics of pentacene-based organic thin-film transistors (OTFTs) by heating a substrate during pentacene layer deposition. In the experiment, we used pentacene and poly(methyl methacrylate) (PMMA) to generate semiconductor and buffer layers, respectively, and fabricate a typical bottom-gate/top contact OTFTs.
The measured electrical characteristics suggest that the performance of OTFTs containing pentacene layers deposited on heated substrates improved during p-channel operations but worsened during n-channel operations. Moreover, the OTFTs also exhibit an increased interfacial electron trap density in n-channel operations. By measuring the contact angles of surface energy of PMMA buffer, we observed an increase in the polar component of surface free energy at high temperatures. Thus, the increased electron trap density is attributed to the presence of many ester polar functional groups on the PMMA surface given that these groups function as electron traps. Raman spectroscopy is used to analyze the microstructure of the pentacene layer, and different microstructures are observed when pentacene layers are deposited on various temperature substrates. These results explain the dissimilar ambipolar performance levels of OTFTs when pentacene layers deposited on a substrate at varying temperatures.
[1] C. D. Dimitrakopoulos, P.R.L. Malenfant, “Organic thin film transistors for large area electron”, Adv.Mater. 14, 99-117(2002)
[2] H. Dong, C. Wang, W. Hu, “High performance organic semiconductors for field-effect transistor”, Chem. Commn. 46, 5211-5222(2010)
[3] S. Günes, H. Neugebauer, N.S. Sariciftci, “Conjugated polymer-based organic solar cells”, Chem, Rev, 107, 1324-1338(2007)
[4] S. H. P. Park, A. Roy, S. Beapupre, S. Cho, N. Coates, J. S. Moon, D. Moses, M. Leclerc, K. Lee, A. J. Heeger, “Bulk heterojunction solar cells with internal quantum efficiency approaching 100%”, Nat Photon. 3, 297-303(2009)
[5] K. Asadi, D.M. D. Leeuw, B. D. Boer, P. W. M. Blow, “Organic non-volatile memories from ferroelectric phase-separated blends”, Nat. Mater. 7, 547-550(2008)
[6] S. Reineke, F. Lindner, G. Schwartz, N. Seidler, K. Walzer, B. Lüssem, K. Leo, “White organic light-emitting diodes with fluorescent tube efficiency”, Nature 459, 234-238(2009)
[7] R. Wang, D. Liu, H. Ren, T. Zhang, H. Yin, G. Liu, J. Li, “High efficient orange and white organic light-emitting diodes based on new orange iridium complexes”, Adv. Mater. 23, 2823-2827(2011)
[8] D. Li, E. J. Borkent, R. Nortrup, H. Moon, H. Katz, Z. Bao, “Humidity effect on electrical performance if organic thin-film transistors”, App. Phys. Lett. 86, 042105
[9] T.Kaji, S. Entani, S. Ikeda, K. Saiki, “Origin of carrier type in intrinsic organic semiconductors”, Adv. Mater. 20, 2084(2008)
[10] R. Schmechel, M.Ahles, H.V. Seggem, “A pentacene ambipolar transistor:Experiment and theory”, App. Phys. Lett. 104, 013302(2014)
[11] C. D. Dimitrakopoulos and P. R. L. Malenfant, “Organic thin for large area electron”, Adv.Mater. 14, 99-117(2002)
[12] Y. Y. Lin, D. J. Gundlach, S.F. Nelson and T. N. Jackson, “Pentacene-based organic thin film transistor”, IEEE Trans. Electron Devices, 44, 1325(1997)
[13] G. Horowitz, “Tunneling Current in Polycrystalline Organic ThinFilm Transistors”, Adv Funct. Mater, 13,53(2003)
[14] L.Torsi, A. Dodabalapur, L. J. Rothberg, A. W. P. Fung and H. E. Katz, “Intrinsic Transport Properties and Performance Limits if Organic Field-Effect Transistors”, Science, 272, 1462(2002)
[15] M. Shtein, J. Mapel, J. B. Banziger and S.R. Forrest, “Effects of film morphology and gate dielectric surface preparation on the electrical characteristics of organic-vapor-phase-deposited pentacene thin-film transistor”, Appl. Phys. Lett. 81,268(2002)
[16] D.Knipp, R. A. Street, A. Volkel and J. Ho, “Pentacene thin film transistor on inorganic dielectrics:Morphology, structural properties, and electric transport”, J. Appl. Phys. 93,347(2003)
[17] D. W. Van Krevelen, “Properties of polymers”, Elsevier Scientific Publishing Company Amsterdam, New York, 1976
[18] E. H. Nicollian, J. R. Brews, MOS(Metal Oxide Semiconductor) Physics and Technology, Wiley-Interscience, New York, 1982
[19] R.E. Herbert, Y. Hwang, S.Stemmer, “Comparison of methods to quantify interface trap densities at dielectric/III-V semiconductor interfaces”, J. Appl. Phys. 108, 124101-1-124101-14 (2010)
[20] P. F. Barbara, T. J. Meyer, M. A. Ratner, “Contemporary issues in electron transfer research”, J. Phys. Chem. 100, 13148-13168 (1996)