簡易檢索 / 詳目顯示

研究生: 施育呈
Shih, Yu-Cheng
論文名稱: 中溫熱電材料ZnSb製程設計與石墨烯阻障層效應探討
Process Design of Medium-Temperature Thermoelectric ZnSb and the Effectiveness of Graphene Barrier Layers
指導教授: 施士塵
Shih, Shih-Chen
林仁輝
Lin, Jen-Fin
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 98
中文關鍵詞: 鋅銻熱電材料火花電漿燒結Seebeck係數熱電優值石墨烯阻障層微觀結構
外文關鍵詞: Zinc antimonide thermoelectric material, Spark plasma sintering(SPS), Seebeck coefficient, Figure of merit, Graphene barrier layer, Microstructure
相關次數: 點閱:33下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 口試合格證書 I 摘要 II Abstract IV 誌謝 XIII 目錄 XIV 圖目錄 XVII 表目錄 XVIII 第一章 緒論 1 1-1 前言 1 1-2 文獻回顧 2 1-2-1 中溫熱電材料選擇 2 1-2-2 加強材料熱電效能的方法 4 1-2-3 阻障層材料的選擇 5 1-3 研究動機 7 1-4 研究歷程與目標 8 第二章 應用理論 10 2-1 應用理論 10 2-1-1 熱電優值 10 2-1-2 阿基米德法密度計算 10 2-1-3 塊材晶粒大小計算 11 2-1-4 Seebeck 係數 11 2-1-5 晶粒細化對熱導率的影響 12 2-1-6 晶粒尺寸與晶界密度關係 13 2-2 應用機制 13 2-2-1 機械合金化 13 2-2-2 不同粉體製程對晶粒結構與熱電性能的調控機制 15 2-2-3 SPS 燒結機制與緻密化原理 16 2-2-4 石墨烯作為 ZnSb 擴散阻障層的界面穩定機制 18 第三章 製程與實驗量測 20 3-1 ZnSb粉末冶金製程之粉末製作 20 3-1-1 ZnSb粉末球磨合金化 20 3-1-2 球磨時間參數調整 21 3-1-3 粉末粒徑量測 21 3-2 三種不同製程製備ZnSb 22 3-2-1 製程A之目的 23 3-2-2 燒結製程參數設定 25 3-2-3 製程B之目的 25 3-2-3 製程C之目的 26 3-3 粉體晶相與粒徑分析 27 3-3-1 粒徑量測 27 3-3-2 ZnSb粉體XRD晶相分析 27 3-4 塊材性質量測 28 3-4-1 熱傳導性質量測 28 3-4-2 電阻率與Seebeck係數量測 28 3-4-3 晶相分析 29 3-4-4 微結構觀察 29 3-4-5 相對密度量測 29 3-5 石墨烯阻障層之製備 30 3-5-1 石墨烯製備 30 3-5-2 石墨烯阻障層的轉印與界面分析 30 3-5-3 轉印石墨烯後ZnSb熱電性能量測 32 3-6 實驗設備 32 第四章 結果與討論 35 4-1 ZnSb粉末製作 35 4-1-1 機械合金化參數調整 35 4-1-2 粉末結構與結晶分析 36 4-2 火花電漿燒結 39 4-2-1 塊材相對密度量測 39 4-2-2 晶體結構與結晶分析 42 4-2-3 Seebeck係數量測 46 4-2-4 電導性質量測 47 4-2-5 熱傳導性質量測 49 4-2-6 熱電優值(ZT) 50 4-2-7 TEM分析 53 4-3 石墨烯阻障層 62 4-3-1 拉曼分析 62 4-3-2 阻障層效果的斷面觀察 63 4-3-3 擴散層橫截面導電性分析 66 4-3-4 石墨烯阻障層對ZEM-3熱電性質的影響 66 第五章 結論與未來展 71 5-1 結論 71 5-2 未來展望 72 第六章 參考文獻 74

    1. Sok, R.; Kusaka, J. Development And Validation Of Thermal Performances In A Novel Thermoelectric Generator Model For Automotive Waste Heat Recovery Systems. International Journal of Heat and Mass Transfer 2023, 202, 123718.
    2. Proto, A.; Bibbo, D.; Cerny, M.; Vala, D.; Kasik, V.; Peter, L.; Conforto, S.; Schmid, M.; Penhaker, M. Thermal Energy Harvesting On The Bodily Surfaces Of Arms And Legs Through A Wearable Thermo-Electric Generator. Sensors 2018, 18, 1927.
    3. Champier, D. Thermoelectric generators: A Review Of Applications. Energy Conversion And Management 2017, 140, 167-181.
    4. D. Global thermoelectric modules market - industry trends and forecast to 2029.
    5. Pei, J.; Cai, B.; Zhuang, H.-L.; Li, J.-F. Bi2Te3-Based Applied Thermoelectric Materials: Research Advances And New Challenges. National science review 2020, 7, 1856-1858.
    6. Pandey, T.; Singh, D.J.; Parker, D.; Singh, A.K. Thermoelectric Properties Of Β-Fesi2. Journal of Applied Physics 2013, 114.
    7. Wu, H.; Hu, B.; Tian, N.; Zheng, Q. Preparation Of Β-Fesi2 Thermoelectric Material By Laser Sintering. Materials Letters 2011, 65, 2877-2879.
    8. Xiao, Y.; Zhao, L.-D. Charge And Phonon Transport In Pbte-Based Thermoelectric Materials. npj Quantum Materials 2018, 3, 55.
    9. Pei, Y.; LaLonde, A.; Iwanaga, S.; Snyder, G.J. High Thermoelectric Figure Of Merit In Heavy Hole Dominated Pbte. Energy & Environmental Science 2011, 4, 2085-2089.
    10. Jing, H.; Tong, X.; Zhu, J.; Yang, T.; Xia, A.; Liu, Z.; Jin, C. Microstructural Analysis And Thermoelectric Properties Of Skutterudite Cosb3 Materials Produced By Melt Spinning And Spark Plasma Sintering. Ceramics International 2021, 47, 24916-24923.
    11. Mohanty, A.; Deheri, P.K.; Khatei, J.; Mallick, S.; Rout, D.; Pradhan, G.K. Solvothermally Synthesized Nanocrystalline CoSb3: Insights Into Lattice Dynamics, Thermal Stability, And Thermal Conductivity. Journal of Physics and Chemistry of Solids 2025, 112587.
    12. Okamura, C.; Ueda, T.; Hasezaki, K. Preparation Of Single-Phase Znsb Thermoelectric Materials Using A Mechanical Grinding Process. Materials transactions 2010, 51, 860-862.
    13. Fischer, A.; Scheidt, E.-W.; Scherer, W.; Benson, D.; Wu, Y.; Eklöf, D.; Häussermann, U. Thermal And Vibrational Properties Of Thermoelectric Znsb: Exploring The Origin Of Low Thermal Conductivity. Physical Review B 2015, 91, 224309.
    14. Zhang, X.; Bu, Z.; Lin, S.; Chen, Z.; Li, W.; Pei, Y. GeTe Thermoelectrics. Joule 2020, 4, 986-1003.
    15. Perumal, S.; Roychowdhury, S.; Biswas, K. High Performance Thermoelectric Materials And Devices Based On Gete. Journal of Materials Chemistry C 2016, 4, 7520-7536.
    16. Rowe, D. Thermoelectrics Handbook: Macro To Nano. CRC Taylor & Francis. Boca Raton 2006.
    17. Anno, H.; Matsubara, K.; Notohara, Y.; Sakakibara, T.; Tashiro, H. Effects Of Doping On The Transport Properties Of Cosb3. Journal of Applied Physics 1999, 86, 3780-3786.
    18. Hong, M.; Chen, Z.-G. Chemistry In Advancing Thermoelectric Gete Materials. Accounts of Chemical Research 2022, 55, 3178-3190.
    19. Tan, Q.; Li, J.-F. Thermoelectric Properties Of Sn-S Bulk Materials Prepared By Mechanical Alloying And Spark Plasma Sintering. Journal of electronic materials 2014, 43, 2435-2439.
    20. Zhao, L.-D.; Zhang, B.-P.; Li, J.-F.; Zhou, M.; Liu, W.-S.; Liu, J. Thermoelectric And Mechanical Properties Of Nano-Sic-Dispersed Bi2Te3 Fabricated By Mechanical Alloying And Spark Plasma Sintering. Journal of Alloys and Compounds 2008, 455, 259-264.
    21. Xu, Z.; Yang, J.; Xiao, Y.; Li, G.; Zhang, J.S.; Peng, J. Thermoelectric Properties Of P-Type (Bi0. 26Sb0. 74) 2Te3+ 3% Te Ingots Prepared By Vacuum Melting. Procedia Engineering 2012, 27, 137-143.
    22. Shi, G.; Cao, Z.; Yan, X.; Wang, Q. In-Situ Fabrication Of A UHMWPE Nanocomposite Reinforced By Sio2 Nanospheres And Its Tribological Performance. Materials Chemistry and Physics 2019, 236, 121778.
    23. Paul, A.R.; Mukherjee, M.; Singh, D. A Critical Review On The Properties Of Intermetallic Compounds And Their Application In The Modern Manufacturing. Crystal research and technology 2022, 57, 2100159.
    24. Liu, X.; Peng, B.; Zhang, W.; Zhu, J.; Wei, M. Improvement of High-Temperature Stability of Al₂O₃/Pt/ZnO/Al₂O₃ Film Electrode for SAW Devices by Using Al₂O₃ Barrier Layer. Materials (Basel, Switzerland) 2017, 10.
    25. Lee, W.; Cho, H.; Cho, B.; Kim, J.; Nam, W.; Kim, Y.; Jung, W.; Kwon, H.; Lee, J.; Lee, J. Diffusion Barrier And Electrical Characteristics Of A Self-Aligned Mgo Layer Obtained From A Cu (Mg) Alloy Film. Applied Physics Letters 2000, 77, 2192-2194.
    26. Hsieh, S.-H.; Chen, W.J.; Chien, C.-M. Structural Stability of Diffusion Barriers in Cu/Ru/MgO/Ta/Si. Nanomaterials 2015, 5, 1840-1852.
    27. Zhu, L.; Zhou, Q.; Yang, X.; Lei, J.; Chen, K.; Luo, Z.; Huang, P.; Zhou, C.; Chen, K.J.; Zhang, B. High-Performance Ultrathin-Barrier Algan/Gan Hybrid Anode Diode With Al₂O₃ Gate Dielectric And In Situ Si₃N₄-Cap Passivation. IEEE Transactions on Electron Devices 2020, 67, 4136-4140.
    28. Morrow, W.K.; Pearton, S.J.; Ren, F. Review Of Graphene As A Solid State Diffusion Barrier. Small 2016, 12, 120-134.
    29. Hong, J.; Lee, S.; Lee, S.; Han, H.; Mahata, C.; Yeon, H.-W.; Koo, B.; Kim, S.-I.; Nam, T.; Byun, K. Graphene As An Atomically Thin Barrier To Cu Diffusion Into Si. Nanoscale 2014, 6, 7503-7511.
    30. Ting, C. TiN Formed By Evaporation As A Diffusion Barrier Between Al And Si. Journal of Vacuum Science and Technology 1982, 21, 14-18.
    31. Chen, W.-C.; Qin, S.; Yu, Z.; Wong, H.-S.P. Reduced HfO₂ Resistive Memory Variability by Inserting a Thin SnO₂ as Oxygen Stopping Layer. IEEE Electron Device Letters 2021, 42, 1778-1781.
    32. Snyder, G.J.; Christensen, M.; Nishibori, E.; Caillat, T.; Iversen, B.B. Disordered Zinc In Zn4Sb3 With Phonon-Glass And Electron-Crystal Thermoelectric Properties. Nature materials 2004, 3, 458-463.
    33. Niedziolka, K.; Pothin, R.; Rouessac, F.; Ayral, R.-M.; Jund, P. Theoretical and Experimental search for ZnSb-based Thermoelectric Materials. Journal of Physics: Condensed Matter 2014, 26, 365401.
    34. Li, H.; Jing, H.; Han, Y.; Lu, G.-Q.; Xu, L.; Liu, T. Interfacial Evolution Behavior of AgSbTe2. 01/nanosilver/Cu Thermoelectric Joints. Materials & Design 2016, 89, 604-610.
    35. Lin, T.; Liao, C.; Wu, A.T. Evaluation Of Diffusion Barrier Between Lead-Free Solder Systems And Thermoelectric Materials. Journal of electronic materials 2012, 41, 153-158.
    36. Kim, H.S.; Liu, W.; Chen, G.; Chu, C.-W.; Ren, Z. Relationship Between Thermoelectric Figure Of Merit And Energy Conversion Efficiency. Proceedings of the National Academy of Sciences 2015, 112, 8205-8210.
    37. Snyder, G.J.; Snyder, A.H. Figure of merit ZT of a Thermoelectric Device Defined From Materials Properties. Energy & Environmental Science 2017, 10, 2280-2283.
    38. Wang, S.; Ning, J.; Zhu, L.; Yang, Z.; Yan, W.; Dun, Y.; Xue, P.; Xu, P.; Bose, S.; Bandyopadhyay, A. Role of Porosity Defects In Metal 3D Printing: Formation Mechanisms, Impacts On Properties and Mitigation Strategies. Materials Today 2022, 59, 133-160.
    39. Klug, H.P.; Alexander, L.E. X-ray Diffraction Procedures: For Polycrystalline And Amorphous Materials; 1974.
    40. Martin, J.; Tritt, T.; Uher, C. High Temperature Seebeck Coefficient Metrology. Journal of Applied Physics 2010, 108.
    41. 謝豐任. 碲化鉍基複合粉體之製備及其塊材熱電性質之研究. 2017.
    42. Wang, X.; Yang, Y.; Zhu, L. Effect Of Grain Sizes And Shapes On Phonon Thermal Conductivity Of Bulk Thermoelectric Materials. Journal of Applied Physics 2011, 110.
    43. Sood, A.; Cheaito, R.; Bai, T.; Kwon, H.; Wang, Y.; Li, C.; Yates, L.; Bougher, T.; Graham, S.; Asheghi, M. Direct Visualization Of Thermal Conductivity Suppression Due To Enhanced Phonon Scattering Near Individual Grain Boundaries. Nano letters 2018, 18, 3466-3472.
    44. Goldsmid, H.J. Introduction To Thermoelectricity; Springer: 2010; Vol. 121.
    45. Callister Jr, W.D.; Rethwisch, D.G. Materials Science And Engineering: An Introduction; John wiley & sons: 2020.
    46. DeCastro, C.L.; Mitchell, B.S. Nanoparticles From Mechanical Attrition. Synthesis, functionalization, and surface treatment of nanoparticles 2002, 5.
    47. Eklöf, D.; Fischer, A.; Wu, Y.; Scheidt, E.-W.; Scherer, W.; Häussermann, U. Transport Properties Of The II–V Semiconductor ZnSb. Journal of Materials Chemistry A 2013, 1, 1407-1414.
    48. Wei, L.K.; Abd Rahim, S.Z.; Al Bakri Abdullah, M.M.; Yin, A.T.M.; Ghazali, M.F.; Omar, M.F.; Nemeș, O.; Sandu, A.V.; Vizureanu, P.; Abdellah, A.E.-h. Producing Metal Powder From Machining Chips Using Ball Milling Process: A review. Materials 2023, 16, 4635.
    49. Suryanarayana, C. Mechanical Alloying And Milling. Progress in materials science 2001, 46, 1-184.
    50. Suryanarayana, C. Evolution Of Mechanical Alloying. Mechanical Alloying of Ferrous and Non-Ferrous Alloys 2024, 1-37.
    51. Das, P.; Bathula, S.; Gollapudi, S. Evaluating The Effect Of Grain Size Distribution On Thermal Conductivity Of Thermoelectric Materials. Nano Express 2020, 1, 020036.
    52. Biswas, R.; Vitta, S.; Dasgupta, T. Influence Of Zinc Content And Grain Size On Enhanced Thermoelectric Performance Of Optimally Doped ZnSb. Materials Research Bulletin 2022, 149, 111702.
    53. Pothin, R.; Ayral, R.; Berche, A.; Granier, D.; Rouessac, F.; Jund, P. Preparation And Properties Of ZnSb Thermoelectric Material Through Mechanical-Alloying And Spark Plasma Sintering. Chemical Engineering Journal 2016, 299, 126-134.
    54. Abedi, M.; Asadi, A.; Vorotilo, S.; Mukasyan, A.S. A Critical Review On Spark Plasma Sintering Of Copper And Its Alloys. Journal of Materials Science 2021, 56, 19739-19766.
    55. Song, M.-S.; Choi, S.-M.; Seo, W.-S.; Moon, J.; Jang, K.-W. Thermoelectric And Mechanical Properties Of Zn 4 Sb 3 Polycrystals Sintered By Spark Plasma Sintering. Journal of the korean physical society 2012, 60, 1735-1740.
    56. Zhang, T.; Zhou, K.; Li, X.; Chen, Z.; Su, X.; Tang, X. Reversible Structural Transition In Spark Plasma-Sintered Thermoelectric Zn 4 Sb 3. Journal of Materials Science 2016, 51, 2041-2048.
    57. Tokita, M. Mechanism of spark plasma sintering. In Proceedings of Proceeding of the International Symposium on Microwave, Plasma and Thermochemical Processing of Advanced Materials; pp. 69-76.
    58. Malik, S.A.; Van Nong, N. Contact of ZnSb Thermoelectric Material To Metallic Electrodes Using S-Bond 400 Solder Alloy. Materials Today: Proceedings 2019, 8, 625-631.
    59. Niyobuhungiro, D.; Hong, L. Graphene Polymer Composites: Art Of Review On Fabrication Method, Properties, And Future Perspectives. Advances in Science and Technology. Research Journal 2021, 15, 37-49.
    60. Wirtz, C.; Berner, N.C.; Duesberg, G.S. Large‐Scale Diffusion Barriers From CVD Grown Graphene. Advanced Materials Interfaces 2015, 2, 1500082.
    61. Hasezaki, K.; Nishimura, M.; Umata, M.; Tsukuda, H.; Araoka, M. Mechanical Alloying Of BiTe and BiSbTe Thermoelectric Materials. Materials transactions, JIM 1994, 35, 428-432.
    62. Kim, K.H.; Shim, S.H.; Shim, K.B.; Niihara, K.; Hojo, J. Microstructural And Thermoelectric Characteristics Of Zinc Oxide‐Based Thermoelectric Materials Fabricated Using A Spark Plasma Sintering Process. Journal of the American Ceramic Society 2005, 88, 628-632.
    63. Song, X.; Schrade, M.; Masó, N.; Finstad, T.G. Zn Vacancy Formation, Zn Evaporation And Decomposition Of ZnSb At Elevated Temperatures: Influence On The Microstructure And The Electrical Properties. Journal of Alloys and Compounds 2017, 710, 762-770.
    64. Zhang, L.; Tsutsui, M.; Ito, K.; Yamaguchi, M. Effects of ZnSb and Zn Inclusions On The Thermoelectric Properties Of β-Zn4Sb3. Journal of Alloys and Compounds 2003, 358, 252-256.

    無法下載圖示 校內:2030-08-24公開
    校外:2030-08-24公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE