簡易檢索 / 詳目顯示

研究生: 謝可謙
Hsieh, Ke-Chien
論文名稱: 靜電放電保護電路在低溫環境下的特性研究
Characteristics of an Electrostatic Discharge Protection Circuit at Cryogenic Temperatures
指導教授: 高國興
Kao, Kuo-Hsing
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2025
畢業學年度: 113
語文別: 英文
論文頁數: 82
中文關鍵詞: 低溫操作靜電放電防護電路CMOS40nm28nm4K
外文關鍵詞: Cryogenic Operation, ESD Protection Circuit, CMOS, 40 nm, 28 nm, 4K
相關次數: 點閱:21下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,隨著量子電腦與高效能運算電腦的快速發展,為支援龐大的運算需求,對於穩定且高效的低溫資料儲存技術之需求亦隨之提升。量子電腦為降低熱擾動對量子位元(qubits)穩定性的影響,必須於低溫環境中操作。
    另一方面,隨著CMOS製程技術不斷微縮,靜電放電(ESD)防護電路在高密度積體電路中的重要性日益提升。傳統ESD測試與防護電路設計多以常溫條件為主,然而隨著低溫電子技術的發展,低溫環境對ESD防護電路之影響已成為不容忽視的關鍵課題。
    本研究針對CMOS製程之ESD防護電路,於300K至4K溫度範圍內進行測試與分析,探討不同溫度條件下ESD防護電路之耐受度與元件行為變化,期望為低溫應用環境下之電路設計提供可靠之實驗數據與技術參考。

    In recent years, with the rapid advancement of quantum computers and high-performance computing systems, the demand for stable and efficient cryogenic data storage technologies has grown to support increasingly large computational workloads. Quantum computers must operate under cryogenic conditions to minimize thermal disturbances that affect the stability of quantum bits (qubits).
    At the same time, as CMOS process technology continues to scale down, the importance of electrostatic discharge (ESD) protection circuits in high-density integrated circuits has become increasingly prominent. Conventional ESD testing and protection circuit design have primarily focused on room-temperature conditions. However, with the development of cryogenic electronics, the impact of low-temperature environments on ESD protection circuits has emerged as a critical issue that can no longer be overlooked.
    This study focuses on ESD protection circuits fabricated using CMOS processes, conducting testing and analysis across a temperature range from 300K down to 4K. It investigates the changes in ESD robustness and device behavior under different temperature conditions, aiming to provide reliable experimental data and technical references for circuit design intended for cryogenic applications.

    摘要 I Abstract II 致謝 III Table of Contents VI List of Figures VIII List of Tables XII Chapter 1 Introduction 1 1.1 Research Motivation 1 1.2 ESD Phenomenon and Test Models 1 Chapter 2 Fundamentals of Electrostatic Discharge Devices 6 2.1 Overview of ESD Protection Circuit Design 6 2.2 Low-Temperature Effects on Semiconductor 8 2.3 Diode 10 2.4 Bipolar Junction Transistor 16 2.5 MOSFET 19 2.6 CMOS Inverter 21 Chapter 3 Measurement and Device Under Test 24 3.1 Measurement Setup 24 3.2 Device Types and Measurement Conditions 29 Chapter 4 Results and Discussion 38 4.1 Diode Measurement Results 38 4.2 Inverter Test Results 42 4.3 28nm SCR Device Analysis 47 4.4 ESD Protection Circuit Analysis 60 Chapter 5 Conclusion and Future Work 63 5.1 Conclusion 63 5.2 Future Work 64 References 66

    [1] R. ESD Association, NY. "Fundamentals of Electrostatic Discharge Part Five – Device Sensitivity and Testing." https://www.esda.org/esd-overview/esd-fundamentals/part-5-device-sensitivity-and-testing/ (accessed.
    [2] S. Agarwal. "What’s The Difference Between HBM, CDM, And MM Test?" https://www.electronicdesign.com/technologies/power/article/21799383/whats-the-difference-between-hbm-cdm-and-mm-test (accessed.
    [3] C. T. Corporation. "Understanding the Differences Between HBM and IEC 61000-4-2 ESD Standards." https://www.powerctc.com/en/node/6207 (accessed.
    [4] E. PARTNER. "White Paper-Implications of the new changes in IEC 61000-4-2 edition 3, on ESD Generators." chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://www.emc-partner.com/downloads/white-papers/130-white-paper-esd-iec61000-4-2-edition-3-2025/file (accessed.
    [5] F. A. Altolaguirre and M.-D. Ker, "Active ESD protection for input transistors in a 40-nm CMOS process," in VLSI Design, Automation and Test (VLSI-DAT), 2015: IEEE, pp. 1-4.
    [6] S. M. Sze, Semiconductor devices: physics and technology. John wiley & sons, 2008.
    [7] P. Geng, W. Li, X. Zhang, X. Zhang, Y. Deng, and H. Kou, "A novel theoretical model for the temperature dependence of band gap energy in semiconductors," Journal of Physics D: Applied Physics, vol. 50, no. 40, p. 40LT02, 2017.
    [8] S. M. Sze, Y. Li, and K. K. Ng, Physics of semiconductor devices. John wiley & sons, 2021.
    [9] E. Simoen, B. Dierickx, L. Deferm, and C. Claeys, "The behavior of silicon p‐n junction‐based devices at liquid helium temperatures," Journal of applied physics, vol. 70, no. 2, pp. 1016-1024, 1991.
    [10] A. Sedra, K. Smith, T. C. Carusone, and V. Gaudet, "Microelectronic circuits 8th edition," vol. 14, 2020.
    [11] J. Tzou, C. Yao, R. Cheung, and H. Chan, "The temperature dependence of threshold voltages in submicrometer CMOS," IEEE electron device letters, vol. 6, no. 5, pp. 250-252, 1985.
    [12] J. Appenzeller, J. Knoch, M. T. Bjork, H. Riel, H. Schmid, and W. Riess, "Toward nanowire electronics," IEEE Transactions on electron devices, vol. 55, no. 11, pp. 2827-2845, 2008.
    [13] Keysight. "EasyEXPERT group+ software." https://www.keysight.com/us/en/products/software/application-sw/easyexpert-group-device-characterization-software/easyexpert-group-software-pc.html (accessed.
    [14] M.-D. Ker. "ESD Technology." http://www.alab.iee.nycu.edu.tw/~mdker/ESD/index/index3.html (accessed.
    [15] K. Serbulova et al., "Insight into Latchup Risk in 28nm Planar Bulk Technology for Quantum Computing Applications," in 2024 IEEE International Reliability Physics Symposium (IRPS), 2024: IEEE, pp. 1-7.
    [16] M.-D. Ker and S.-F. Hsu, "Transient-induced latchup in CMOS technology: Physical mechanism and device simulation," in IEDM Technical Digest. IEEE International Electron Devices Meeting, 2004., 2004: IEEE, pp. 937-940.
    [17] S. Bargstadt-Franke et al., "Transient latch-up: Experimental analysis and device simulation," in 2003 Electrical Overstress/Electrostatic Discharge Symposium, 2003: IEEE, pp. 1-8.

    無法下載圖示 校內:2030-08-11公開
    校外:2030-08-11公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE