簡易檢索 / 詳目顯示

研究生: 江朝文
Chiang, Chao-Wen
論文名稱: 新型磁浮線性壓縮機的設計與開發
Design and Development of a Novel Magnetically Levitated Linear Compressor
指導教授: 蔡南全
Tsai, Nan-Chyuan
學位類別: 博士
Doctor
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 120
中文關鍵詞: 磁驅式線性致動器混合式磁浮軸承線性壓縮機積分式順滑控制
外文關鍵詞: Magnetic Linear Actuator, Hybrid Magnetic Bearing, Linear Compressor, Integral Sliding Mode Control
相關次數: 點閱:109下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文旨為開發應用於線性壓縮機之磁浮型磁驅式線性致動器。磁浮型磁驅式線性致動器主要包含一磁驅式線性致動器與一對混合式磁浮軸承。線性致動器其驅動推桿配有Halbach排列之永久磁鐵,可產生週期性磁場並可集中磁通於磁作用區間,可大幅增加所產生之磁力大小。定子磁極由七個方向交替纏繞之線圈所構成,其與驅動推桿所產生之磁通密度作用,可產生弦波式之軸向磁推力以驅動推桿往復運動。此外,於徑向磁力方面,本設計具有”離心復位”之特性,當驅動推桿穩定地往復運動時,驅動推桿之週期性磁場會於定子產生一變換電動勢,此電動勢之磁場在與驅動推桿之週期性磁場相互作用而產生一相斥性磁力,當驅動推桿徑向偏移中心位置時,此磁斥力便會產生並自動地將驅動推桿節制至中心位置。另一方面,混合式磁浮軸承整合永久磁鐵與電磁鐵,永久磁鐵所產生之磁力不僅可克服驅動推桿之自我重量,亦可增加磁浮軸承之磁力剛性。因此,電磁鐵僅作用於系統啟動時將驅動推桿懸浮與節制驅動推桿位置偏移。此外,本論文亦針對電磁系統、機械動態與控制策略進行理論分析與數值模擬驗證。磁浮型磁驅式線性致動器之系統動態具有狀態相依與非線性輸入之特性,本研究針對此特性提出創新型積分式順滑控制策略,並以李亞普諾夫法證實閉迴路系統之穩定度。
    本論文所提之磁浮型磁驅式線性致動器由實驗初步驗證,混合式磁浮軸承之安定時間與穩態誤差分別為0.002 sec 與小於2 um。推桿之振盪頻率約為47 Hz並維持3 cm固定的衝程。此外,磁浮型磁驅式線性致動器的振動量之振幅為40 um,噪音約為61.2 dB。
    經由實測初步驗證,磁浮軸承具有優越之穩態與暫態響應。線性致動器可維持固定之衝程並可達高頻之震盪頻率。此外,本論文所提之線性致動器其震動量與噪音,與市售之往復式空氣壓縮機比較,震動量與噪音分別可降低54%與23%。

    A Magnetically Levitated Linear Actuator (MLLA), which consists of a Magnetic Linear Actuator (MLA), a pair of Hybrid Magnetic Bearing (HMB) and a drive rod, is developed for linear compressors applications. The Halbach magnetized armature naturally generates a periodically distributed magnetic field which is interacted with that induced by the EM poles. Therefore, an axially reciprocating thrust force is induced that is inherently suitable for high frequency drive for linear compressors. A lateral magnetic repulsive force, due to the eddy current induced at the cylindrical frame, to exert upon the drive rod is generated as long as the drive rod is deviated in the radial direction. Once the position of the drive rod is laterally deviated from the central position, the drive rod is automatically brought back by this magnetic repulsive force. To prevent any potential wear or collision by the drive rod against conventional bearings and certainly reduce noise, the HMB pair is employed to regulate the lateral position deviation of the drive rod. The control strategy named as Integral Sliding Mode Control (ISMC) is synthesized to account for state-dependent system parameters and input nonlinearities for the MLLA system. In addition, the closed-loop stability is proven by Lyapunov direct method.
    The performance of the MLLA is also verified and evaluated by experiments. The settling time and steady-state error of the free response of the HMB are 0.002 sec and less than 2 um respectively. The oscillation frequency of the drive rod is about 47 Hz with 3 cm constant stroke retained. In addition, the vibration and noise at operation mode are also measured. The amplitude of the vibrated displacement is about 40 um and the average noise level is about 61.2 dB.
    By experiments, the free responses of the HMBs exhibit quick response, short rise time and settling time, without any bias. The high-frequency linear motion with constant stroke of the MLA can be successfully achieved. In addition, in comparison with commercial reciprocating air compressor, the displacement due to vibration is reduced 54% and the noise level by 23%.

    摘要………………………………………………………………………… II Abstract……………………………………………………………………… IV 致謝…………………………………………………………………………. VI 1. Introduction………………………………………………………………. 1 1.1 Linear Compressor Versus Conventional Reciprocating Compressor. 1 1.2 Literature Review of Linear Compressor…………………………… 3 1.3 Research Motivations and Objectives………………………………. 4 1.4 Organization of Dissertation………………………………………… 8 2. Design and Operation Principle……………………………………….. 14 2.1 Magnetically Levitated Linear Compressor……………………….. 14 2.2 Magnetic Linear Actuator………………………………………….. 16 2.3 Active Magnetic Bearing…………………………………………... 18 2.4 Power Amplifier……………………………………………………. 20 2.5 Self-sensing Technique………………………………...................... 22 2.6 Conclusions………………………………………………………… 25 3. Analysis for Magnetically Levitated Linear Compressor…………….. 35 3.1 Magnetic Analysis for Magnetic Linear Actuator…………………. 35 3.2 Analysis for Hybrid Magnetic Bearing…………………………….. 46 3.3 Gas Reaction Force by Compression Chamber……………………. 49 3.4 Dynamics of Rod/HMB/MLA System…………………………….. 50 3.5 Conclusions………………………………………………………... 56 4. Integral Sliding Mode Control…………………………………………. 65 4.1 Feedback Control and Mission of Controller……………………… 65 4.2 Strategy against Input Nonlinearity………………………………... 67 4.3 Integral Sliding Mode Control……………………………………... 68 4.4 Performance of ISMC……………………………………………… 71 4.5 Conclusions………………………………………………………… 73 5. Experimental Setup and Simulation Results………………………….. 85 5.1 Setup of Test Rig…………………………………………………... 85 5.2 Performances of MLLC……………………………………………. 88 5.3 Measurement of Vibration and Noise……………………………… 89 5.4 Conclusions………………………………………………………... 91 6. Conclusion and Future Works………………………………………… 105 6.1 Conclusion………………………………………………………... 105 6.2 Contributions……………………………………………………... 106 6.3 Future Works……………………………………………………… 107 Reference………………………………………………………………….. 109 Appendix…………………………………………………………………... 115 Curriculum Vitae…………………………………………………………. 118

    Analog Devices, Inc., 1995.
    http://www.analog.com/static/imported-files/data_sheets/AD598.pdf
    Bianchi, N., “Analytical computation of magnetic fields and thrusts in a tubular PM linear servo motor,” Conference Record - IAS Annual Meeting (IEEE Industry Applications Society), Vol. 1, pp. 21-28, 2000.
    Bianchi, N., Bolognani, S., Corte, D.D., Tonel, F., “Tubular linear permanent magnet motors: An overall comparison,” IEEE Transactions on Industry Applications, Vol. 39, pp. 466-475, 2003.
    Bloch, A., Drakunov, S., “Stabilization and tracking in the nonholonomic integrator via sliding modes,” Systems and Control Letters, Vol. 29, pp. 91-99, 1996.
    Chen, N., Tang, Y.J., Wu, Y.N., Chen, X., Xu, L., “Study on static and dynamic characteristics of moving magnet linear compressors,” Cryogenics, Vol. 47, pp. 457-467, 2007.
    Cho, S.-H., Ahn, S.-T., Kim, Y.-H., “A simple model to estimate the impact force induced by piston slap,” Journal of Sound and Vibration, Vol. 255, pp. 229-242, 2003.
    Choe, G.-S., Kim, K.-J., “Analysis of nonlinear dynamics in a linear compressor,” JSME International Journal, Series C: Mechanical Systems, Machine Elements and Manufacturing, Vol. 43, pp. 545-552, 2000.
    Chun, T.-W., Ahn, J.-R., Lee, H.-H., Kim, H.-G., Nho, E.-C., “A novel strategy of efficiency control for a linear compressor system driven by a PWM inverter,” IEEE Transactions on Industrial Electronics, Vol. 55, pp. 296-301, 2008.
    Clark, R.E., Smith, D.S., Mellor, P.H., Howe, D., “Design optimization of moving-magnet actuators for reciprocating electro-mechanical systems,” IEEE Transactions on Magnetics, Vol. 31, pp. 3746-3748, 1995.
    Den Hartog, J.P., “Mechanical Vibration,” McGraw-Hill, London, 1968.
    Eastham, J.F., “Novel synchronous machines. Linear and disc,” IEE Proceedings B: Electric Power Applications, Vol. 137, pp. 49-58, 1990.
    Edwards, C., Spurgeon, S.K., “Sliding Mode Control: Theory and Applications,” Taylor and Francis, London, 1998.
    Elbuken, C., Shameli, E., Khamesee, M.B., “Modeling and analysis of eddy-current damping for high-precision magnetic levitation of a small magnet,” IEEE Transactions on Magnetics, Vol. 43, pp. 26-32, 2007.
    Geng, Z., Chen, J., “Investigation into piston-slap-induced vibration for engine condition simulation and monitoring,” Journal of Sound and Vibration, Vol. 282, pp. 735-751, 2005.
    Guo, Y.G., Jin, J.X., Zhu, J.G., Lu, H.Y., “Design and analysis of a prototype linear motor driving system for HTS maglev transportation,” IEEE Transactions on Applied Superconductivity, Vol. 17, pp. 2087-2090, 2007.
    Hong, Y., Huang, J., Xu, Y., “On an output feedback finite-time stabilization problem,” IEEE Transactions on Automatic Control, Vol. 46, pp. 305-309, 2001.
    Hsu, K.-C., “Adaptive variable structure control design for uncertain time-delayed systems with nonlinear input,” Dynamics and Control, Vol. 8, pp. 341-354, 1998.
    Huang, B.J., Chen, Y.C., “System dynamics and control of a linear compressor for stroke and frequency adjustment,” Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME, Vol. 124, pp. 176-182, 2002.
    Jabbari, F., Schmitendorf, W.E.,” A noniterative method for the design of linear robust controllers,” IEEE Transactions on Automatic Control, Vol. 35, pp. 954-957, 1990.
    Jang, S.-M., Choi, J.-Y., Lee, S.-H., Cho, H.-W., Jang, W.-B., “Analysis and experimental verification of moving-magnet linear actuator with cylindrical Halbach array,” IEEE Transactions on Magnetics, Vol. 40, pp. 2068-2070, 2004.
    Kim, H., Roh, C.-G., Kim, J.-K., Shin, J.-M., Hwang, Y., Lee, J.-K., “An experimental and numerical study on dynamic characteristic of linear compressor in refrigeration system,” International Journal of Refrigeration, Vol. 32, pp. 1536-1543, 2009.
    Ko, J., Jeong, S., “Analysis on the stirling-type pulse tube refrigerator in consideration of dynamics of linear compressor,” Cryogenics, Vol. 48, pp. 68-76, 2008.
    Koh, D.-Y., Hong, Y.-J., Park, S.-J., Kim, H.-B., Lee, K.-S., “A study on the linear compressor characteristics of the Stirling cryocooler,” Cryogenics, Vol. 42, pp. 427-432, 2002.
    Lee, H., Moon, H., Wang, S., Park, K., “Iron loss analysis of linear oscillating actuator for linear compressor,” COMPEL - The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, Vol. 25, pp. 487-495, 2006.
    Lequesne, B., “Permanent magnet linear motors for short strokes,” IEEE Transactions on Industry Applications, Vol. 32, pp. 161-168, 1996.
    Mahmoud, M.S.,” Adaptive control of a class of time-delay systems with uncertain parameters,” International Journal of Control, Vol. 63, pp. 937-950, 1996.
    Masuyama, S., Kim, Y.-H., Park, S.-J., Hong, Y.-J., Kim, H.-B., Lee, S.-H., “Experimental research of Stirling type pulse tube refrigerator with an active phase control,” Cryogenics, Vol. 46, pp. 385-390, 2006.
    Paramasivam, S., Vijayan, S., Vasudevan, M., Arumugam, R., Krishnan, R., “Real-time verification of AI based rotor position estimation techniques for a 6/4 pole switched reluctance motor drive,” IEEE Transactions on Magnetics, Vol. 43, pp. 3209-3222, 2007.
    Renton, D., Elbestawi, M.A., “Motion control for linear motor feed drives in advanced machine tools, “International Journal of Machine Tools and Manufacture, Vol. 41, pp. 479-507, 2001.
    Shyu, K.-K., Chen, Y.-C.,” Robust tracking and model following for uncertain time-delay systems,” International Journal of Control, Vol. 62, pp. 589-600, 1995.
    Sivadasan, K.K., “Analysis of self-sensing active magnetic bearings working on inductance measurement principle,” IEEE Transactions on Magnetics, Vol. 32, pp. 329-334, 1996.
    Slotine, J.J.E., Li, W., “Applied Nonlinear Control,” Prentice Hall, 1991.
    Sodano, H.A., Inman, D.J., “Modeling of a new active eddy current vibration control system,” Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME, Vol. 130, pp. 0210091-02100911, 2008.
    Teruo, N., Atsushi, Y., Takeshi, A., “A Numerical Approach for Piston Secondary Motion Analysis and Its Application to Piston Related Noise,” SAE Paper 972043, 1997.
    Tsai, N.-C., Chiang, C.-W., “Spindle position regulation for wind power generators,” Mechanical Systems and Signal Processing, Vol. 24, pp. 873-889, 2010.
    Tsai, N.-C., Chiang, C.-W., Li, H.-Y., “Innovative active magnetic bearing design to reduce cost and energy consumption,” Electromagnetics, Vol. 29, pp. 406-420, 2009.
    Tsai, N.-C., Kuo, C.-H., Lee, R.-M., “Regulation on radial position deviation for vertical AMB systems,” Mechanical Systems and Signal Processing, Vol. 21, pp. 2777-2793, 2007.
    Unger, R.Z., Walt, N.R., “Linear Compressor,” International Application Technology Conference, Vol. 45, pp. 239-246, 1994.
    Utkin, V., Shi, J., “Integral sliding mode in systems operating under uncertainty conditions,” Proceedings of the IEEE Conference on Decision and Control, Vol. 4, pp. 4591-4596, 1996.
    Veprik, A., Nachman, I., Pundak, N., “Dynamic counterbalancing the single-piston linear compressor of a Stirling cryogenic cooler,” Cryogenics, Vol. 49, pp. 165-170, 2009.
    Vischer, D., Bleuler, H., “Self-sensing active magnetic levitation,” IEEE Transactions on Magnetics, Vol. 29, pp. 1276-1281, 1993.
    Wang, J., Howe, D., “Analysis of axially magnetised, iron-cored, tubular permanent magnet machines,” IEE Proceedings: Electric Power Applications, Vol. 151, pp. 144-150, 2004.
    Wang, J., Jewell, G.W., Howe, D., “General framework for the analysis and design of tubular linear permanent magnet machines,” IEEE Transactions on Magnetics, Vol. 35, pp. 1986-2000, 1999.
    Wang, J., Lin, Z., Howe, D., “Analysis of a short-stroke, single-phase, quasi-Halbach magnetised tubular permanent magnet motor for linear compressor applications,” IET Electric Power Applications, Vol. 2, pp. 193-200, 2008.
    Watada, M., Yanashima, K., Oishi, Y., Ebihara, D., Dohmeki, H., “Improvement on characteristics of linear oscillatory actuator for artificial hearts,” IEEE Transactions on Magnetics, Vol. 29, pp. 3361-3363, 1993.
    Yang, Y.-P., Huang, B.-J., “Fuzzy control on the phase and stroke of a linear compressor of a split-Stirling cryocooler,” Cryogenics, Vol. 38, pp. 231-238, 1998.
    Yim, J.-S., Sul, S.-K., Ahn, H.-J., Han, D.-C., “Sensorless position control of active magnetic bearings based on high frequency signal injection with digital signal processing,” 19th Annual IEEE Applied Power Electronics Conference and Exposition, pp. 1351-1354, 2004.
    Zhang J., Chang Y., Xing X., “Study on self-sensor of linear moving magnet compressor's piston stroke,” IEEE Sensors Journal, Vol. 9, pp. 154-158, 2009.

    下載圖示 校內:2016-03-10公開
    校外:2016-03-10公開
    QR CODE