| 研究生: |
林晏國 Lin, Yen-Kuo |
|---|---|
| 論文名稱: |
發展骨髓基質細胞和海藻酸鹽水凝膠的複合物促進骨組織工程-體外研究 Developing a composite of bone marrow stromal cells and alginate hydrogel for bone tissue engineering-in vitro study |
| 指導教授: |
黃振勳
Huang, Jehn-Shyun |
| 共同指導教授: |
鄭豐裕
Cheng, Fong-Yu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 口腔醫學研究所 Institute of Oral Medicine |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 78 |
| 中文關鍵詞: | 骨髓間業基質幹細胞 、海藻凝膠 、鋇離子 |
| 外文關鍵詞: | Bone marrow mesenchymal stem cell, barium-alginate hydrogel |
| 相關次數: | 點閱:213 下載:8 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在美國估計每年已經有超過五十萬的補骨手術案例,而且呈現倍數增加的趨勢。為了改善這個現象,許多文獻已經有探討研究補骨的方法:自體骨移植、異體骨移植、異種骨移植、異質成形骨粉、骨形成蛋白,都已經被開發並應用在人體治療。到目前為止,自體骨移植一直是補骨治療裡的黃金準則,然而口腔內部能取得骨粉的位置有限,而且從口腔外部來的自體骨可能會造成供體部位受傷或是感染的後遺症。有鑑於此,異體骨移植、異種骨移植、異質成形骨粉、骨形成蛋白替代方法也慢慢被開發。但可惜的是,這些替代方法缺乏直接骨誘導作用,而且無法保證他們的效力。為了解決上述的方法的缺陷,新穎的補骨方法:組織工程一直在研究進行中。將骨母細胞播種至適當的細胞載體,配合適當生長因子使細胞在載體內增生、分化、基質成形,並隨著載體裂解達到修復骨頭缺損的能力。
本次實驗目的是運用組織工程的方法:結合大鼠骨髓間葉幹細胞和海藻凝膠的方式。透過二甲基藍來測試不同的二價離子(鈣離子和鋇離子)形成的海藻凝膠裂解性質。再透過微電腦斷層掃描和掃描式電子顯微鏡來觀察海藻凝膠內部的孔洞分布、大小以及連接性。接著,從大鼠股骨骨髓抽取間葉幹細胞,加入維生素C、甘油磷酸、地塞米松誘導其形成骨分化細胞,運用免疫細胞化學染色證實骨分化生物標記:鹼性磷酸酶、骨鈣蛋白的表現後,再將骨分化細胞播種至海藻凝膠,運用細胞存活率分析 (MTT assay)測試細胞的生長情形。此外,運用G4RGDY短肽修飾海藻酸鈉的結構,改善細胞和海藻酸鈉之間的貼附能力。最後,再透過掃描式電子顯微鏡和能量散射光譜儀,觀察細胞在載體內部的形狀以及骨基質分泌。我們的實驗結果顯示:鋇離子海藻凝膠的裂解程度顯著小於鈣離子海藻凝膠。此外,載體的孔洞大小平均是150~300μm、孔洞連接性都超過95%。接著,骨化細胞也能在鋇離子海藻凝膠內部隨著時間慢慢增生、表現些微貼附並呈現圓形且聚集成堆的景象、並能分泌鈣離子和磷離子複合物。綜合上述結果:代表鋇離子和海藻酸鈉的鍵結強度比鈣離子強,形成的海藻凝膠載體穩定性較佳。而且細胞也適合在鋇離子海藻凝膠生長,而且能獲得營養供給,還能在內部表現出骨基質所需的元素。經實驗證實,透過鋇離子和海藻酸鈉形成的海藻凝膠是能讓骨分化細胞在內部生存。希望透過這次研究能提供另一個選擇方向,未來還能運用在動物實驗中,提升骨組織工程的治療效率。
關鍵字 : 骨髓間業基質幹細胞、海藻凝膠、鋇離子
In previous studies, we can see that there have been several studies about bone tissue regeneration composed of bone marrow mesenchymal stem cell, calcium-alginate, and growth factor. In this study, we aimed to use tissue engineering made up of bone marrow mesenchymal stem cell, barium-alginate, and growth factor to compare the alginate hydrogel integrity and osteoid secretion with calcium-alginate. First, we induced mesenchymal stem cell into osteoblast by osteogenic medium. Second, we observed the alginate hydrogel degradation by DMMB assay. Third, we calculated alginate hydrogel pore size and porosity by SEM and Micro CT. Fourth, we detected the cell viability within the alginate hydrogel by MTT assay. Finally, we observed cell morphology and osteoid secretion by SEM and EDS. The results show the degradation of barium-alginate is smaller than calcium-alginate, the pore size is 150~300μm, the porosity is greater than 95%, the cell can proliferate within barium-alginate through MTT assay, and the cell morphology within the hydrogel is round and cluster, and the calcium ion and phosphorus ions is detected by EDS. In summary, the composite of bone marrow mesenchymal stem cell and barium-alginate hydrogel can be a novel tissue engineering technique for bone
regeneration.
Key words : Bone marrow mesenchymal stem cell, barium-alginate hydrogel
Alsberg, E., Anderson, K.W., Albeiruti, A., Franceschi, R.T. & Mooney,
D.J. Cell-interactive alginate hydrogels for bone tissue engineering.
Journal of Dental Research 80, 2025-2029 (2001).
Andersen, T., Auk-Emblem, P. & Dornish, M. 3D Cell Culture in Alginate
Hydrogels. Microarrays 4, 133 (2015).
Baghaban Eslaminejad, M., Taghiyar, L. & Falahi, F. Quantitative
analysis of the proliferation and differentiation of rat articular
chondrocytes in alginate 3D culture. Iranian Biomedical Journal 13,
153-160 (2009).
Burg, K.J., Porter, S. & Kellam, J.F. Biomaterial developments for bone
tissue engineering. Biomaterials 21, 2347-2359 (2000).
Calafiore, R., et al. Microencapsulated pancreatic islet allografts into
nonimmunosuppressed patients with type 1 diabetes - First two cases.
Diabetes Care 29, 137-138 (2006).
Chen, C.-Y., et al. 3D Porous Calcium-Alginate Scaffolds Cell Culture
System Improved Human Osteoblast Cell Clusters for Cell Therapy.
Theranostics 5, 643-655 (2015).
Coelho, M.J., Trigo Cabral, A. & Fernandes, M.H. Human bone cell
cultures in biocompatibility testing. Part I: osteoblastic differentiation of
serially passaged human bone marrow cells cultured in α-MEM and in
DMEM. Biomaterials 21, 1087-1094 (2000).
Dimitriou, R., Jones, E., McGonagle, D. & Giannoudis, P.V. Bone
regeneration: current concepts and future directions. BMC Med 9, 66
(2011).
Diniz, I.M.A., et al. Gingival Mesenchymal Stem Cell (GMSC) Delivery
System Based on RGD-Coupled Alginate Hydrogel with Antimicrobial
Properties: A Novel Treatment Modality for Peri-Implantitis.
Journal of prosthodontics : official journal of the American College of
Prosthodontists 25, 105-115 (2016).
Dvir-Ginzberg, M., Gamlieli-Bonshtein, I., Agbaria, R. & Cohen, S. Liver
tissue engineering within alginate scaffolds: Effects of cell-seeding
density on hepatocyte viability, morphology, and function. Tissue
engineering 9, 757-766 (2003).
Gabusi, E., et al. Extracellular calcium chronically induced human
osteoblasts effects: specific modulation of osteocalcin and collagen type XV.
Journal of Cellular Physiology 227, 3151-3161 (2012).
Giannoudis, P.V., Einhorn, T.A. & Marsh, D. Fracture healing: the
diamond concept. Injury 38 Suppl 4, S3-6 (2007).
Guan, Y. Characterization of alginate scaffolds using X-ray imaging
techniques. (2010).
Ikuko Machida-Sano, M.H.a.H.N. Cell Compatibility of Three-
Dimensional Porous Barium-Cross-Linked Alginate Hydrogels.
Journal of Scientific Research & Reports 3(20): 2611-2621(2014).
Jaiswal, N., Haynesworth, S.E., Caplan, A.I. & Bruder, S.P. Osteogenic
differentiation of purified, culture-expanded human mesenchymal stem
cells in vitro. Journal of Cellular Biochemistry 64, 295-312 (1997).
Khattak, S.F., Spatara, M., Roberts, L. & Roberts, S.C. Application of
colorimetric assays to assess viability, growth and metabolism of
hydrogel-encapsulated cells. Biotechnology Letters 28, 1361-1370 (2006).
Kong, H.J., Smith, M.K. & Mooney, D.J. Designing alginate hydrogels to
maintain viability of immobilized cells. Biomaterials 24, 4023-4029
(2003).
Kuo, C.K. & Ma, P.X. Maintaining dimensions and mechanical properties
of ionically crosslinked alginate hydrogel scaffolds in vitro.
Journal of Biomedical Materials Research Part A 84, 899-907 (2008).
Langenbach, F. & Handschel, J. Effects of dexamethasone, ascorbic acid
and β-glycerophosphate on the osteogenic differentiation of stem cells in
vitro. Stem Cell Research & Therapy 4, 117-117 (2013).
Lee, J., Cuddihy, M.J. & Kotov, N.A. Three-dimensional cell culture
matrices: state of the art. Tissue Engineering Part B Reviews 14, 61-86 (2008).
Lee, K.Y. & Mooney, D.J. Alginate: Properties and biomedical
applications. Progress in Polymer Science 37, 106-126 (2012).
Li, Z., Ramay, H.R., Hauch, K.D., Xiao, D. & Zhang, M. Chitosan–
alginate hybrid scaffolds for bone tissue engineering. Biomaterials 26,
3919-3928 (2005).
Lian, J.B. & Stein, G.S. Development of the osteoblast phenotype:
molecular mechanisms mediating osteoblast growth and differentiation.
the iowa orthopaedic journal 15, 118-140 (1995).
Lin, H.R. & Yeh, Y.J. Porous alginate/hydroxyapatite composite scaffolds
for bone tissue engineering: preparation, characterization, and in vitro
studies. Journal of Biomedical Materials Research Part B: Applied Biomaterials 71, 52-65 (2004).
Luo, Y., Lode, A., Wu, C., Chang, J. & Gelinsky, M. Alginate/
nanohydroxyapatite scaffolds with designed core/shell structures
fabricated by 3D plotting and in situ mineralization for bone tissue
engineering. ACS Applied Materials & Interfaces 7, 6541-6549 (2015).
Machida-Sano, I., et al. Surface characteristics determining the cell
compatibility of ionically cross-linked alginate gels. Biomedical Materials 9,
025007 (2014).
Markusen, J.F., et al. Behavior of adult human mesenchymal stem cells
ntrapped in alginate-GRGDY beads. Tissue engineering 12, 821-830
(2006).
Morch, Y.A., Donati, I., Strand, B.L. & Skjak-Braek, G. Effect of Ca2+,
Ba2+, and Sr2+ on alginate microbeads. Biomacromolecules 7,1471-1480
(2006).
Moshaverinia, A., et al. Co-encapsulation of anti-BMP2 monoclonal
antibody and mesenchymal stem cells in alginate microspheres for bone
tissue engineering. Biomaterials 34, 6572-6579 (2013).
Nakaoka, R., Hirano, Y., Mooney, D.J., Tsuchiya, T. & Matsuoka, A.
Study on the potential of RGD- and PHSRN-modified alginates as
artificial extracellular matrices for engineering bone. Journal of Artificial Organs 16, 284-293 (2013).
Peirone, M., Ross, C.J.D., Hortelano, G., Brash, J.L. & Chang, P.L.
Encapsulation of various recombinant mammalian cell types in different
alginate microcapsules. Journal of Biomedical Materials Research 42,
587-596 (1998).
Richardson, J.C., Dettmar, P.W., Hampson, F.C. & Melia, C.D. A simple,
high throughput method for the quantification of sodium alginates on
oesophageal mucosa. European Journal of Pharmaceutics and Biopharmaceutics 57, 299-305 (2004).
Robey, P.G. Cell sources for bone regeneration: the good, the bad, and the
ugly (but promising). Tissue Engineering Part B Reviews 17, 423-430 (2011).
Rowley, J.A., Madlambayan, G. & Mooney, D.J. Alginate hydrogels as
synthetic extracellular matrix materials. Biomaterials 20, 45-53 (1999).
Safley, S.A., Cui, H., Cauffiel, S., Tucker-Burden, C. & Weber, C.J.
Biocompatibility and Immune Acceptance of Adult Porcine Islets
Transplanted Intraperitoneally in Diabetic NOD Mice in Calcium
Alginate Poly-L-lysine Microcapsules versus Barium Alginate
Microcapsules without Poly-L-lysine. Journal of diabetes science and
technology (Online) 2, 760-767 (2008).
Santana, B.P., et al. Comparing different methods to fix and to dehydrate
cells on alginate hydrogel scaffolds using scanning electron microscopy.
Microscopy Research and Technique 78, 553-561 (2015).
Sargus-Patino, C. Alginate Hydrogel as a Three-dimensional Extracellular
Matrix for In Vitro Models of Development. Biological Systems
Engineering-Dissertations, Theses, and Student Research. (2013).
Shoufeng Yang, P.D., Kah-fai Leong, M.S.E., M.S.M.E., Zhaohui Du,
Ph.D., and Chee-Kai Chua, Ph.D. The Design of Scaffolds for Use in
Tissue Engineering. Part I. Traditional Factors. Tissue engineering
Volume 7(2001).
Smidsrød, O. & Skjak-Brlk, G. Alginate as immobilization matrix for
cells. Trends in Biotechnology 8, 71-78 (1990).
Srivatanakul, P. Mesenchymal Stem Cells. The Bangkok Medical Journal
6(2013).
Stein, G.S., et al. Runx2 control of organization, assembly and activity of
the regulatory machinery for skeletal gene expression. Oncogene 23,
4315-4329 (2004).
Tuch, B.E., et al. Safety and Viability of Microencapsulated Human Islets
Transplanted Into Diabetic Humans. Diabetes Care 32, 1887-1889(2009).
V.Breguet , V.V., U.von Stockar, I.W. Marison. Aqueous two-phase
systems for the production of a novel type of microcapsule. XVth
International Workshop on Bioencapsulation (2007).
Vecchiatini, R., et al. Effect of dynamic three-dimensional culture on
osteogenic potential of human periodontal ligament-derived
mesenchymal stem cells entrapped in alginate microbeads. Journal of Periodontal Research 50, 544-553 (2015).
Wan, H.Y. Studies about the regeneration of oro-maxillofacial tissue
using iPS cells. (2000).
Wang, H.-I.C.a.Y. Cell Responses to Surface and Architecture of Tissue
Engineering Scaffolds Regenerative Medicine and Tissue Engineering -
Cells and Biomaterials (2011).
Wang, L., et al. Evaluation of sodium alginate for bone marrow cell tissue
engineering. Biomaterials 24, 3475-3481 (2003).
Weng, Y., et al. Repair of experimental alveolar bone defects by
tissue-engineered bone. Tissue engineering 12, 1503-1513 (2006).