簡易檢索 / 詳目顯示

研究生: 劉驊興
Liu, Hua-Xing
論文名稱: 利用波茲曼傳輸理論詮釋氣體感測器於氣流到電流變化 : 聲波對感測器影響
Using Boltzmann transmission theory to interpret the gas sensor in the gas flow to the current change : response of gas sensor driven by acoustic sound wave
指導教授: 羅光耀
Lo, Kuang-Yao
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 57
中文關鍵詞: 表面氣體吸附朗繆爾吸附模型半導體氣體感測器
外文關鍵詞: Surface gas adsorption, Langmuir equation, Semiconductor gas sensor
相關次數: 點閱:43下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 氣體感測器對於現今為了預防毒氣、食物腐敗…等,是個不可或缺的角色,其中以測量表面電阻率的金屬氧化半導體感測器因半導體製成技術進步而為主要感測法。不過由於理論上極度複雜牽扯於外界環境,也因此常使用現象學表示而沒有良好的物理參數的解釋。其中現象學表示已Langmuir equation最為有名,不過還是可設法利用熱統計力學去呈現出Langmuir equation的架構出來,也因此我們利用波茲曼傳輸方程式嘗試去建構且廣義Langmuir equation,並且利用聲學與流體動力學的方式去證明之,並預測必能提高感測器的反應與回覆速率與影響一定的感測器靈敏度,而最終能設計出一個利用駐波法的高敏感性氣體感測器出來。

    Today, Gas sensor is indispensable for preventing toxic gas, food spoilage…etc. among them, the metal oxide semiconductor gas sensor is the main sensing method for measuring resistance due to advances in semiconductor manufacturing technology. However, because of the complex theory involved in the external environment, the phenomenological representation is often used, and it hasn’t good explanation of the physical parameters. For example, The Langmuir equation is the most famous phenomenological representation, although it is still possible to use statistical physics to present its structure. Therefore, we try to construct and generalize the Langmuir equation by the Boltzmann transport equation and prove it by the experiment of acoustics and fluid dynamics. We also predict that the response and recovery rate of the sensor will be improved and the sensitivity of the sensor will be affected. Finally, we can design a highly sensitive gas sensor using the standing wave method.

    Abstract I Acknowledgement III Contents IV Figure List VI Chapter 1 Introduction 1 Chapter 2 Langmuir Rate Equation use Boltzmann Transport Equation 3 2-1 Langmuir Rate Equation的近代發展 3 2-2 Langmuir Rate Equation與Semiconductor metal oxide gas電性關係 4 Chapter 3 Acoustic 14 3-1 Langmuir Rate Equation的近代發展 14 3-2 Langmuir Rate Equation與Semiconductor metal oxide gas電性關係 18 3-3 Langmuir Rate Equation的近代發展 22 3-4 Langmuir Rate Equation與Semiconductor metal oxide gas電性關係 22 3-5 共振 25 3-6 非線性聲學 25 Chapter 4 The Prediction Of Theory 28 4-1 聲波直接打於氣體感測器上情況 28 4-2 將氣體感測器裝於駐波管側面打入聲波情況 33 Chapter 5 Experiment Setup 35 5-1 測量系統環境 35 5-2 測量系統 36 5-3 測量系統中test gas sensor 37 Chapter 6 Result And Discussion 39 6-1 (I)低真空系統實驗 39 6-2(II)封閉式系統實驗 42 6-3 (III)開放式系統實驗 46 Chapter 7 Conclusion and Future work 49 Reference 51 Appendix 57

    [1] U. T.Nakate, R.Ahmad, P.Patil, Y.Wang, K. S.Bhat, T.Mahmoudi, Y. T.Yu, E. kyungSuh, andY. B.Hahn, Improved Selectivity and Low Concentration Hydrogen Gas Sensor Application of Pd Sensitized Heterojunction N-ZnO/p-NiO Nanostructures, J. Alloys Compd. 797, 456 (2019).
    [2] J.Fouletier, Gas Analysis with Potentiometric Sensors. a Review, Sensors and Actuators 3, 295 (1982).
    [3] P. L.Surface, Direct Piezoelectric Coupling To, 314, 10 (2004).
    [4] E.Verona, A d’amico, 3, 31 (1982).
    [5] S.Dong, F.Bai, J. F.Li, andD.Viehland, Sound-Resonance Hydrogen Sensor, Appl. Phys. Lett. 82, 4590 (2003).
    [6] S.Dong, F.Bai, L.Van, H.Cao, J. F.Li, andD.Viehland, Vacuum Response and Gas Leak Detection in Piezoelectrically Driven Sound-Resonance Cavity, Appl. Phys. Lett. 84, 4144 (2004).
    [7] N.BenSaber, A.Mezni, A.Alrooqi, andT.Altalhi, A Review of Ternary Nanostructures Based Noble Metal/Semiconductor for Environmental and Renewable Energy Applications, J. Mater. Res. Technol. 9, 15233 (2020).
    [8 ]H.Nazemi, A.Joseph, J.Park, andA.Emadi, Advanced Micro-and Nano-Gas Sensor Technology: A Review, Sensors (Switzerland) 19, (2019).
    [9] S.Gupta Chatterjee, S.Chatterjee, A. K.Ray, andA. K.Chakraborty, Graphene-Metal Oxide Nanohybrids for Toxic Gas Sensor: A Review, Sensors Actuators, B Chem. 221, 1170 (2015).
    [10] S.Mahajan andS.Jagtap, Metal-Oxide Semiconductors for Carbon Monoxide (CO) Gas Sensing: A Review, Appl. Mater. Today 18, 100483 (2020).
    [11] L.Zhu andW.Zeng, Room-Temperature Gas Sensing of ZnO-Based Gas Sensor: A Review, Sensors Actuators, A Phys. 267, 242 (2017).
    [12] A.Dey, Semiconductor Metal Oxide Gas Sensors: A Review, Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 229, 206 (2018).
    [13] D.Ju, H.Xu, Z.Qiu, J.Guo, J.Zhang, andB.Cao, Highly Sensitive and Selective Triethylamine-Sensing Properties of Nanosheets Directly Grown on Ceramic Tube by Forming NiO/ZnO PN Heterojunction, Sensors Actuators, B Chem. 200, 288 (2014).
    [14] Y.Lu, Y.Ma, S.Ma, andS.Yan, Hierarchical Heterostructure of Porous NiO Nanosheets on Flower-like ZnO Assembled by Hexagonal Nanorods for High-Performance Gas Sensor, Ceram. Int. 43, 7508 (2017).
    [15] X.Kou, N.Xie, F.Chen, T.Wang, L.Guo, C.Wang, Q.Wang, J.Ma, Y.Sun, H.Zhang, andG.Lu, Superior Acetone Gas Sensor Based on Electrospun SnO2 Nanofibers by Rh Doping, Sensors Actuators, B Chem. 256, 861 (2018).
    [16] M.Hjiri, R.Dhahri, K.Omri, L.ElMir, S. G.Leonardi, N.Donato, andG.Neri, Effect of Indium Doping on ZnO Based-Gas Sensor for CO, Mater. Sci. Semicond. Process. 27, 319 (2014).
    [17] K.Jain, R. P.Pant, andS. T.Lakshmikumar, Effect of Ni Doping on Thick Film SnO2 Gas Sensor, Sensors Actuators, B Chem. 113, 823 (2006).
    [18] H.Aydın, F.Yakuphanoglu, andC.Aydın, Al-Doped ZnO as a Multifunctional Nanomaterial: Structural, Morphological, Optical and Low-Temperature Gas Sensing Properties, J. Alloys Compd. 773, 802 (2019).
    [19] M.Hjiri, L.ElMir, S. G.Leonardi, A.Pistone, L.Mavilia, andG.Neri, Al-Doped ZnO for Highly Sensitive CO Gas Sensors, Sensors Actuators, B Chem. 196, 413 (2014).
    [20] S.Bai, W.Guo, J.Sun, J.Li, Y.Tian, A.Chen, R.Luo, andD.Li, Synthesis of SnO2-CuO Heterojunction Using Electrospinning and Application in Detecting of CO, Sensors Actuators, B Chem. 226, 96 (2016).
    [21] F.Huber, J.Berwanger, S.Polesya, S.Mankovsky, H.Ebert, andF. J.Giessibl, Chemical Bond Formation Showing a Transition from Physisorption to Chemisorption, Science (80-. ). 366, 235 (2019).
    [22] A.Shokri andN.Salami, Gas Sensor Based on MoS2 Monolayer, Sensors Actuators, B Chem. 236, 378 (2016).
    [23] C. W.Lin, K. L.Huang, K. W.Chang, J. H.Chen, K. L.Chen, andC. H.Wu, Ultraviolet Photodetector and Gas Sensor Based on Amorphous In-Ga-Zn-O Film, Thin Solid Films 618, 73 (2016).
    [24] T.Sno, C.Copyright, E. B.VAll, andT.Uv-leds, Sensors and Actuators B : Chemical, 195, 702 (2014).
    [25] R.Chen, J.Wang, Y.Xia, andL.Xiang, Near Infrared Light Enhanced Room-Temperature NO2 Gas Sensing by Hierarchical ZnO Nanorods Functionalized with PbS Quantum Dots, Sensors Actuators, B Chem. 255, 2538 (2018).
    [26] G.Horner andC.Hierold, Gas Analysis by Partial Model Building, Sensors Actuators B. Chem. 2, 173 (1990).
    [27] H.Sundgren, F.Winquist, I.Lukkari, andI.Lundstrom, Artificial Neural Networks and Gas Sensor Arrays: Quantification of Individual Components in a Gas Mixture, Meas. Sci. Technol. 2, 464 (1991).
    [28] T.Nakamoto andT.Moriizumi, Odor Sensor Using Quartz-Resonator Array and Neural-Network Pattern Recognition, Ultrason. Symp. Proc. 1, 613 (1988).
    [29] D.Haydock andJ. M.Yeomans, Acoustic Enhancement of Diffusion in a Porous Material, Ultrasonics 41, 531 (2003).
    [30] Y.Chen, G.Xie, J.Chang, J.Grundy, andQ.Liu, A Study of Coal Aggregation by Standing-Wave Ultrasound, Fuel 248, 38 (2019).
    [31] I.Langmuir, The Constitution and Fundamental Properties of Solids and Liquids. Part II.-Liquids, J. Franklin Inst. 184, 721 (1917).
    [32] Y.Wang, J.Di, L.Wang, X.Li, N.Wang, B.Wang, Y.Tian, L.Jiang, andJ.Yu, Infused-Liquid-Switchable Porous Nanofibrous Membranes for Multiphase Liquid Separation, Nat. Commun. 8, (2017).
    [33] I.Langmuir, Diminishing Approximately 1% For, J. Am. Chem. Soc. 40, 1361 (1919).
    [34] R.Universiry andM.Aignan, The the The, 24, 1 (2006).
    [35] P.Of andM.Tungsten, Ii. , 1., II, 42 (n.d.).
    [36] E. K.Rideal, LI. On the Velocity of Unimolecular Reactions , London, Edinburgh, Dublin Philos. Mag. J. Sci. 40, 461 (1920).
    [37] S.Gomri, J. L.Seguin, andK.Aguir, Modeling on Oxygen Chemisorption-Induced Noise in Metallic Oxide Gas Sensors, Sensors Actuators, B Chem. 107, 722 (2005).
    [38] S.Gomri, J. L.Seguin, J.Guerin, andK.Aguir, Adsorption-Desorption Noise in Gas Sensors: Modelling Using Langmuir and Wolkenstein Models for Adsorption, Sensors Actuators, B Chem. 114, 451 (2006).
    [39] R.Afonso, L.Gales, andA.Mendes, Kinetic Derivation of Common Isotherm Equations for Surface and Micropore Adsorption, Adsorption 22, 963 (2016).
    [40] W.Plazinski, W.Rudzinski, andA.Plazinska, Theoretical Models of Sorption Kinetics Including a Surface Reaction Mechanism: A Review, Adv. Colloid Interface Sci. 152, 2 (2009).
    [41] J.Wang andX.Guo, Adsorption Kinetic Models: Physical Meanings, Applications, and Solving Methods, J. Hazard. Mater. 390, 122156 (2020).
    [42] K. L.Tan andB. H.Hameed, Insight into the Adsorption Kinetics Models for the Removal of Contaminants from Aqueous Solutions, J. Taiwan Inst. Chem. Eng. 74, 25 (2017).
    [43] K. V.Kumar, K.Porkodi, andF.Rocha, Langmuir-Hinshelwood Kinetics - A Theoretical Study, Catal. Commun. 9, 82 (2008).
    [44] H.Drost, Electronic Processes on Semiconductor Surfaces during Chemisorption, Vol. 177 (1992).
    [45] A.Dey, Semiconductor Metal Oxide Gas Sensors: A Review, Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 229, 206 (2018).
    [46] N.Barsan, D.Koziej, andU.Weimar, Metal Oxide-Based Gas Sensor Research: How To?, Sensors Actuators, B Chem. 121, 18 (2007).
    [47] C.Wang, L.Yin, L.Zhang, D.Xiang, andR.Gao, Metal Oxide Gas Sensors: Sensitivity and Influencing Factors, Sensors 10, 2088 (2010).
    [48] G.Barbero, L. R.Evangelista, andI.Lelidis, Effective Adsorption Energy and Generalization of the Frumkin-Fowler-Guggenheim Isotherm, J. Mol. Liq. 327, 114795 (2021).
    [49] S.Hao, J.Wen, X.Yu, andW.Chu, Effect of the Surface Oxygen Groups on Methane Adsorption on Coals, Appl. Surf. Sci. 264, 433 (2013).
    [50] E. D.Hondros andM. P.Seah, Theory of Grain Boundary Segregation in Terms of Surface Adsorption Analogues., Met. Trans A 8 A, 1363 (1977).
    [51] D.A.O, Langmuir, Freundlich, Temkin and Dubinin–Radushkevich Isotherms Studies of Equilibrium Sorption of Zn 2+ Unto Phosphoric Acid Modified Rice Husk, IOSR J. Appl. Chem. 3, 38 (2012).
    [52] K. H.Chu andB. C.Tan, Is the Frumkin (Fowler–Guggenheim) Adsorption Isotherm a Two- or Three-Parameter Equation?, Colloids Interface Sci. Commun. 45, 100519 (2021).
    [53] H.Swenson andN. P.Stadie, Langmuir’s Theory of Adsorption: A Centennial Review, Langmuir (2019).
    [54] A.Rothschild andY.Komem, Numerical Computation of Chemisorption Isotherms for Device Modeling of Semiconductor Gas Sensors, Sensors Actuators, B Chem. 93, 362 (2003).
    [55] F.Huber, J.Berwanger, S.Polesya, S.Mankovsky, H.Ebert, andF. J.Giessibl, Chemical Bond Formation Showing a Transition from Physisorption to Chemisorption, Science (80-. ). 366, 235 (2019).
    [56] J.DeBoer, Proceedings of the Physical Society, Nature 180, 635 (1957).
    [57] F. L.Leite, C. C.Bueno, A. L.DaRóz, E. C.Ziemath, andO. N.Oliveira, Theoretical Models for Surface Forces and Adhesion and Their Measurement Using Atomic Force Microscopy, Vol. 13 (2012).
    [58] S. Roy Morrison (auth.) - The Chemical Physics of Surfaces (1990, Springer US) - libgen.lc
    [59] N.Kouklin, M.Omari, andA.Gupt, Transition Metal-Doped ZnO Nanowires: En Route Towards Multi-Colour Light Sensing and Emission Applications, Nanowires Sci. Technol. (2010).
    [60] S.Corby, L.Francàs, A.Kafizas, andJ. R.Durrant, Determining the Role of Oxygen Vacancies in the Photoelectrocatalytic Performance of WO3 for Water Oxidation, Chem. Sci. 11, 2907 (2020).
    [61] A. R.Puigdollers, P.Schlexer, S.Tosoni, andG.Pacchioni, Increasing Oxide Reducibility: The Role of Metal/Oxide Interfaces in the Formation of Oxygen Vacancies, ACS Catal. 7, 6493 (2017).
    [62] R. N.Chauhan, N.Tiwari, R. S.Anand, andJ.Kumar, Development of Al-Doped ZnO Thin Film as a Transparent Cathode and Anode for Application in Transparent Organic Light-Emitting Diodes, RSC Adv. 6, 86770 (2016).
    [63] V.Aroutiounian, Metal Oxide Hydrogen, Oxygen, and Carbon Monoxide Sensors for Hydrogen Setups and Cells, Int. J. Hydrogen Energy 32, 1145 (2007).
    [64] S.Mahajan andS.Jagtap, Metal-Oxide Semiconductors for Carbon Monoxide (CO) Gas Sensing: A Review, Appl. Mater. Today 18, 100483 (2020).
    [65] S.Ahlers, G.Müller, andT.Doll, A Rate Equation Approach to the Gas Sensitivity of Thin Film Metal Oxide Materials, Sensors Actuators, B Chem. 107, 587 (2005).
    [66] N.Bârsan andU.Weimar, Understanding the Fundamental Principles of Metal Oxide Based Gas Sensors; the Example of CO Sensing with SnO2 Sensors in the Presence of Humidity, J. Phys. Condens. Matter 15, (2003).
    [67] N.Barsan andU.Weimar, Conduction Model of Metal Oxide Gas Sensors, J. Electroceramics 7, 143 (2001).
    [68] B. E. L.King, C.Altman, E. L.King, andC.Altman, Deriving the Rate Laws for Enzyme- Catalyzed Reactions, (1956).
    [69] E. C.Mobility andS. C.Layers, Effective Carrier Mobility, 9, (1954).
    [70] U.Kumar, Y. H.Yang, Z. Y.Deng, M. W.Lee, W. M.Huang, andC. H.Wu, In Situ Growth of Ternary Metal Sulfide Based Quantum Dots to Detect Dual Gas at Extremely Low Levels with Theoretical Investigations, Sensors Actuators B Chem. 353, 131192 (2022).
    [71] K. Oura, V.G. Lifshits, A.A. Saranin, A.V. Zotov, M. Katayama - Surface Science_ An Introduction (Advanced Texts in Physics) (2003) - Libgen.Lc.Pdf.
    [72] P.Kumar, Y. H.Chiu, Z. I.Deng, U.Kumar, K. L.Chen, W. M.Huang, andC. H.Wu, Surface Modification of ZnO Nanopillars to Enhance the Sensitivity towards Methane: The Studies of Experimental and First-Principle Simulation, Appl. Surf. Sci. 568, 150817 (2021).
    [73] N.Bârsan, Conduction Models in Gas-Sensing SnO2 Layers: Grain-Size Effects and Ambient Atmosphere Influence, Sensors Actuators B. Chem. 17, 241 (1994).
    [74] M.POLANYI, The Theory of Rate Processes, Nature 149, 509 (1942).
    [75] M.Winfried, Springer-Verlag Berlin Heidelberg GmbH Physics and Astronomy (1993).
    [76] K.Shimanoe andN.Yamazoe, Receptor Function and Response of Semiconductor Gas Sensor, J. Sensors 2009, (2009).
    [77] S.Mishra, C.Ghanshyam, N.Ram, R. P.Bajpai, andR. K.Bedi, Detection Mechanism of Metal Oxide Gas Sensor under UV Radiation, Sensors Actuators, B Chem. 97, 387 (2004).
    [78] J.Mizsei, How Can Sensitive and Selective Semiconductor Gas Sensors Be Made?, Sensors Actuators B. Chem. 23, 173 (1995).
    [79] A.Kumar, M.Kumar, R.Kumar, R.Singh, B.Prasad, andD.Kumar, Numerical Model for the Chemical Adsorption of Oxygen and Reducing Gas Molecules in Presence of Humidity on the Surface of Semiconductor Metal Oxide for Gas Sensors Applications, Mater. Sci. Semicond. Process. 90, 236 (2019).
    [80] M.Bruneau, Fundamentals of Acoustics, Fundamentals of Acoustics.
    [81] Frederick Reif - Fundamentals of Statistical and Thermal Physics (2009, Waveland
    Press) - libgen.li
    [82] S.HANNA, Introduction to Micrometeorology (2nd Edition). By S. P. ARYA. Academic
    Press, 2001. 420 Pp. ISBN 0 12 059354 8. £ 53.95, Journal of Fluid Mechanics.
    [83]白明憲 工程聲學
    [84] D. H.Keefe, Theory Of The Single Woodwind Tone Hole, J. Acoust. Soc. Am. 72, 676
    (1982).
    [85] G. R.Plitnik andW. J.Strong, Numerical Method for Calculating Input Impedances of
    the Oboe, J. Acoust. Soc. Am. 65, 816 (1979).
    [86] M. D.Gardner, K. L.Gee, andG.Dix, An Investigation of Rubens Flame Tube
    Resonances, J. Acoust. Soc. Am. 125, 1285 (2009).
    [87] H.Bruus, Acoustofluidics 2: Perturbation Theory and Ultrasound Resonance Modes,
    Lab Chip 12, 20 (2012).

    下載圖示 校內:2025-07-13公開
    校外:2025-07-13公開
    QR CODE