簡易檢索 / 詳目顯示

研究生: 梁惠楨
Liang, Huei-Chen
論文名稱: 鍵擊化學之親和性蛋白富集策略搭配雙甲基標定及層析質譜法於雌激素化蛋白之偵測與鑑定
Click chemistry-based affinity enrichment coupled with stable isotope dimethyl labeling and LC-MS/MS for the detection and identification of estrogenized proteins
指導教授: 陳淑慧
Chen, Shu-Hui
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 144
中文關鍵詞: 雌激素化蛋白富集純化裂解式生物素探針雙甲基標定法
外文關鍵詞: estrogenization, protein enrichment, cleavable biotin probe, dimethyl labeling
相關次數: 點閱:152下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 雌二醇代謝物已被發現會與生物體脱氧核醣核酸反應形成脫嘌呤加合物,而這些反應也被認為與某些癌症的開端相關,然而其與體內物質形成鍵結的完整反應機構及位點仍是存有疑慮的。直到近期,才被發現雌二醇代謝物會與半胱胺酸、離胺酸、組胺酸形成共價性鍵結,且從糖尿病患者的血清中發現,雌二醇代謝物也會鍵結於人類血清蛋白、免疫球蛋白G上,以此正名,與雌激素代謝物產生共價性鍵結的蛋白即雌激素化蛋白。另外研究也指出,人類胰島素鍵結雌二醇代謝物會影響細胞內的信號傳送及糖吸收能力。
    在此,我們開發且設計出一套利用銅催化疊氮基與炔類環化加成反應搭配生物素與鏈親和素之強鍵結力的雌激素化蛋白純化系統,以液相層析質譜裝置進行偵測。而在實驗參數的優化過程中,我們以人類胰島素作為模板蛋白,同時從全蛋白及蛋白胜肽層面觀察,順利提升了純化的效力。
    隨後,我們在大鼠肝臟組織中添加已知雌激素化及非雌激素化蛋白來判斷複雜樣品純化效力。分別使用與活性物質兒茶酚雌激素反應之樣品;以及僅添加等量溶劑的樣品。經由純化後,再以雙甲基標定法分別標定兩組樣品各為氫及氘,最後以氘氫比值來判斷蛋白被雌激素化之準確性。於此我們純化出69個較具可信度及305個有雌激素化可能性的蛋白。最後我們利用了肝臟組織的催化效能,將添加於大鼠肝臟組織內的活性物質雌激素催化成活性物質兒茶酚雌激素,純化後進行雙甲基標定,一共鑑定出約312個有雌激素化可能的蛋白。
    此純化系統除了擁有良好效能,在搭配雙甲基標定法後更能提升其準確性,因此我們也希望利用此系統偵測到更多的雌激素化蛋白,進而去了解其對於生理上的影響與重要性。

      Quinoidal catechol estrogens (CE-Qs) are known to react with DNA and form stable adducts that are believed to be initiators of estrogen-induced tumorigenesis. Endogenous proteins that are covalently modified by catechol estrogens (CEs), referred to as estrogenized proteins, were recently identified from the blood serum of diabetic patients. In addition, insulin estrogenization was reported to affect insulin signaling and glucose uptake levels in cells. However, identification of estrogenized cellular proteins remains a challenging task.
    Here, we developed a cleavable enrichment strategy via Cu-catalyzed azide-alkyne cycloaddition of an estrogen probe, 17α-Ethynylestradiol (EE2) or 4-Hydroxy Ethynyl Estradiol (4OHEE2), and biotin-based affinity enrichment for the identification of estrogenized proteins in cells or tissues using liquid chromatography-mass spectrometry (LC-MS). Target proteins in rat liver tissues were estrogenized by either 4OHEE2 probes upon co-incubation or EE2 probes by redox conversion. Estrogenized proteins were then clicked with a cleavable (disulfide linkage) biotin moiety, captured by avidin beads, and the captured (estrogenized) proteins were cleaved by the reduction of dithiothreitol followed by enzyme digestion. The resulting peptide digests were injected into LC-MSMS for protein identification based on proteomics approach. In order to differentiate non-specific capture by affinity beads, stable isotope dimethyl labeling was applied to tag the solution without (light) and with (heavy) the addition of the estrogen probe, respectively. Furthermore, human serum albumin, which is prone to estrogenization, and teriparatide (Forteo), which resists estrogenization, were spiked into the solution as the positive and negative control, respectively. Based on stringent search criteria and using the ratio (heavy/light) of the negative control as a filter, more than 300 proteins were identified from rat liver tissue to be potential targets of estrogenization. Among these target proteins, many are cytochrome enzymes that are involved in cellular metabolism or apoptosis and deserve further investigations.

    中文摘要 I 誌謝 VI 表目錄 X 圖目錄 XI 第一章 緒論 1 第二章 背景介紹 2 2.1 雌激素與其代謝物簡介 2 2.2 蛋白質體學與質譜應用 6 2.2.1 蛋白質體學簡介 6 2.2.2 質譜技術於蛋白鑑定應用 6 2.2.3 常見質譜技術 8 2.3 目標蛋白簡介 15 2.3.1 人類胰島素 15 2.3.2 肝臟組織 17 2.4 鍵擊化學(Click chemistry) 19 2.4.1 疊氮基與炔類環化加成(Azide-Alkyne Cycloaddition) 19 2.4.2 代謝標定(Metabolic Labeling) 21 2.5 雙甲基標定法(Dimethyl labeling) 23 第三章 實驗方法 24 3.1 實驗藥品與儀器 24 3.1.1 實驗藥品 24 3.1.2 實驗儀器與器材 25 3.2 生物素化學探針開發 27 3.2.1 合成與純化 27 3.2.2 可行性測試 27 3.3 大鼠肝臟萃取前處理 29 3.4 雌激素化蛋白純化與標定過程 30 3.4.1 人類胰島素 30 3.4.2 可信度測試實驗 31 3.4.2.1 混合非雌激素化蛋白 31 3.4.2.2 大鼠肝臟組織可信度實驗 33 3.4.3 大鼠肝臟組織添加內標準蛋白 34 3.4.4 酵素催化型雌激素化大鼠肝臟組織 35 3.4.4.1 肝臟組織催化效率測試 35 3.4.4.2 純化過程 36 3.5 層析參數與質譜設定 37 3.6 資料庫搜尋軟體設定 39 第四章 結果與討論 41 4.1 生物素化學探針開發 41 4.1.1 合成參數調整 41 4.1.2 可行性測試 43 4.2 鍵擊化學步驟優化 47 4.2.1 鍵擊化學與親和性鍵結參數調整 47 4.2.1.1 還原劑的更改 48 4.2.1.2 配位基濃度比較 49 4.2.1.3 化學探針濃度比較 49 4.2.1.4 反應時間更改 52 4.2.1.5 還原劑濃度調整 52 4.2.2 純化效果確立 55 4.3 純化系統可信度測試 59 4.3.1 雌激素化與非雌激素化蛋白混合測試 59 4.3.2 大鼠肝臟組織添加內標準蛋白 60 4.4 複雜樣品純化 63 4.4.1 雌激素化大鼠肝臟組織 63 4.4.2 酵素催化型雌激素化大鼠肝臟組織 103 第五章 結論 133 第六章 參考文獻 135 附錄I 140 附錄II 142 附錄III 144

    1. Gao, N.; Nester, R. A.; Sarkar, M. A., 4-Hydroxy estradiol but not 2-hydroxy estradiol induces expression of hypoxia-inducible factor 1alpha and vascular endothelial growth factor A through phosphatidylinositol 3-kinase/Akt/FRAP pathway in OVCAR-3 and A2780-CP70 human ovarian carcinoma cells. Toxicology and applied pharmacology 2004, 196 (1), 124-35.
    2. Lee, A. J.; Cai, M. X.; Thomas, P. E.; Conney, A. H.; Zhu, B. T., Characterization of the oxidative metabolites of 17beta-estradiol and estrone formed by 15 selectively expressed human cytochrome p450 isoforms. Endocrinology 2003, 144 (8), 3382-98.
    3. Kono, S.; Merriam, G. R.; Brandon, D. D.; Loriaux, D. L.; Lipsett, M. B.; Fujino, T., Radioimmunoassay and metabolic clearance rate of catecholestrogens, 2-hydroxyestrone and 2-hydroxyestradiol in man. Journal of steroid biochemistry 1983, 19 (1b), 627-33.
    4. Xu, X.; Veenstra, T. D.; Fox, S. D.; Roman, J. M.; Issaq, H. J.; Falk, R.; Saavedra, J. E.; Keefer, L. K.; Ziegler, R. G., Measuring fifteen endogenous estrogens simultaneously in human urine by high-performance liquid chromatography-mass spectrometry. Analytical chemistry 2005, 77 (20), 6646-54.
    5. Huang, H. J.; Chiang, P. H.; Chen, S. H., Quantitative analysis of estrogens and estrogen metabolites in endogenous MCF-7 breast cancer cells by liquid chromatography-tandem mass spectrometry. Journal of chromatography. B, Analytical technologies in the biomedical and life sciences 2011, 879 (20), 1748-56.
    6. Fang, C. M.; Ku, M. C.; Chang, C. K.; Liang, H. C.; Wang, T. F.; Wu, C. H.; Chen, S. H., Identification of Endogenous Site-specific Covalent Binding of Catechol Estrogens to Serum Proteins in Human Blood. Toxicological sciences : an official journal of the Society of Toxicology 2015, 148 (2), 433-42.
    7. Belous, A. R.; Hachey, D. L.; Dawling, S.; Roodi, N.; Parl, F. F., Cytochrome P450 1B1-mediated estrogen metabolism results in estrogen-deoxyribonucleoside adduct formation. Cancer research 2007, 67 (2), 812-7.
    8. Cavalieri, E.; Chakravarti, D.; Guttenplan, J.; Hart, E.; Ingle, J.; Jankowiak, R.; Muti, P.; Rogan, E.; Russo, J.; Santen, R.; Sutter, T., Catechol estrogen quinones as initiators of breast and other human cancers: implications for biomarkers of susceptibility and cancer prevention. Biochimica et biophysica acta 2006, 1766 (1), 63-78.
    9. Zahid, M.; Kohli, E.; Saeed, M.; Rogan, E.; Cavalieri, E., The greater reactivity of estradiol-3,4-quinone vs estradiol-2,3-quinone with DNA in the formation of depurinating adducts: implications for tumor-initiating activity. Chemical research in toxicology 2006, 19 (1), 164-72.
    10. Epe, B.; Hegler, J.; Metzler, M., Site-specific covalent binding of stilbene-type and steroidal estrogens to tubulin following metabolic activation in vitro. Carcinogenesis 1987, 8 (9), 1271-5.
    11. Epe, B.; Harttig, U.; Stopper, H.; Metzler, M., Covalent binding of reactive estrogen metabolites to microtubular protein as a possible mechanism of aneuploidy induction and neoplastic cell transformation. Environmental health perspectives 1990, 88, 123-7.
    12. Haaf, H.; Li, S. A.; Li, J. J., Covalent binding of estrogen metabolites to hamster liver microsomal proteins: inhibition by ascorbic acid and catechol-O-methyl transferase. Carcinogenesis 1987, 8 (2), 209-15.
    13. Markides, C. S.; Liehr, J. G., Specific binding of 4-hydroxyestradiol to mouse uterine protein: evidence of a physiological role for 4-hydroxyestradiol. The Journal of endocrinology 2005, 185 (2), 235-42.
    14. Nicolis, S.; Monzani, E.; Pezzella, A.; Ascenzi, P.; Sbardella, D.; Casella, L., Neuroglobin modification by reactive quinone species. Chemical research in toxicology 2013, 26 (12), 1821-31.
    15. Ku, M. C.; Fang, C. M.; Cheng, J. T.; Liang, H. C.; Wang, T. F.; Wu, C. H.; Chen, C. C.; Tai, J. H.; Chen, S. H., Site-specific covalent modifications of human insulin by catechol estrogens: Reactivity and induced structural and functional changes. Scientific reports 2016, 6, 28804.
    16. Wasinger, V. C.; Cordwell, S. J.; Cerpa-Poljak, A.; Yan, J. X.; Gooley, A. A.; Wilkins, M. R.; Duncan, M. W.; Harris, R.; Williams, K. L.; Humphery-Smith, I., Progress with gene-product mapping of the Mollicutes: Mycoplasma genitalium. Electrophoresis 1995, 16 (7), 1090-4.
    17. Yang, X. J.; Seto, E., Lysine acetylation: codified crosstalk with other posttranslational modifications. Molecular cell 2008, 31 (4), 449-61.
    18. Iberg, N.; Flückiger, R., Nonenzymatic glycosylation of albumin in vivo. Identification of multiple glycosylated sites. Journal of Biological Chemistry 1986, 261 (29), 13542-5.
    19. Chait, B. T., Mass Spectrometry: Bottom-Up or Top-Down? Science 2006, 314 (5796), 65-66.
    20. Danoff, S. K.; Taylor, H. E.; Blackshaw, S.; Desiderio, S., TFII-I, a candidate gene for Williams syndrome cognitive profile: parallels between regional expression in mouse brain and human phenotype. Neuroscience 2004, 123 (4), 931-8.
    21. Fenn, J. B.; Mann, M.; Meng, C. K.; Wong, S. F.; Whitehouse, C. M., Electrospray ionization for mass spectrometry of large biomolecules. Science 1989, 246 (4926), 64-71.
    22. Klingenberg, M., Pigments of rat liver microsomes. Archives of biochemistry and biophysics 1958, 75 (2), 376-86.
    23. Omura, T.; Sato, R., A new cytochrome in liver microsomes. The Journal of biological chemistry 1962, 237, 1375-6.
    24. Hu, L.; Zhuo, W.; He, Y. J.; Zhou, H. H.; Fan, L., Pharmacogenetics of P450 oxidoreductase: implications in drug metabolism and therapy. Pharmacogenetics and genomics 2012, 22 (11), 812-9.
    25. de Waziers, I.; Cugnenc, P. H.; Yang, C. S.; Leroux, J. P.; Beaune, P. H., Cytochrome P 450 isoenzymes, epoxide hydrolase and glutathione transferases in rat and human hepatic and extrahepatic tissues. The Journal of pharmacology and experimental therapeutics 1990, 253 (1), 387-94.
    26. Tabrez, S.; Ahmad, M., Cytochrome P450 system as a toxicity biomarker of industrial wastewater in rat tissues. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association 2010, 48 (3), 998-1001.
    27. Kolb, H. C.; Finn, M. G.; Sharpless, K. B., Click Chemistry: Diverse Chemical Function from a Few Good Reactions. Angewandte Chemie (International ed. in English) 2001, 40 (11), 2004-2021.
    28. Huisgen, R.; Eckell, A., 1.3-Dipolare additionen der azomethin-imine. Tetrahedron Letters 1960, 1 (33), 5-8.
    29. Wang, Q.; Chan, T. R.; Hilgraf, R.; Fokin, V. V.; Sharpless, K. B.; Finn, M. G., Bioconjugation by Copper(I)-Catalyzed Azide-Alkyne [3 + 2] Cycloaddition. Journal of the American Chemical Society 2003, 125 (11), 3192-3193.
    30. Rostovtsev, V. V.; Green, L. G.; Fokin, V. V.; Sharpless, K. B., A Stepwise Huisgen Cycloaddition Process: Copper(I)-Catalyzed Regioselective “Ligation” of Azides and Terminal Alkynes. Angewandte Chemie International Edition 2002, 41 (14), 2596-2599.
    31. Chan, T. R.; Hilgraf, R.; Sharpless, K. B.; Fokin, V. V., Polytriazoles as Copper(I)-Stabilizing Ligands in Catalysis. Organic Letters 2004, 6 (17), 2853-2855.
    32. Lallana, E.; Fernandez-Trillo, F.; Sousa-Herves, A.; Riguera, R.; Fernandez-Megia, E., Click chemistry with polymers, dendrimers, and hydrogels for drug delivery. Pharmaceutical research 2012, 29 (4), 902-21.
    33. Himo, F.; Lovell, T.; Hilgraf, R.; Rostovtsev, V. V.; Noodleman, L.; Sharpless, K. B.; Fokin, V. V., Copper(I)-Catalyzed Synthesis of Azoles. DFT Study Predicts Unprecedented Reactivity and Intermediates. Journal of the American Chemical Society 2005, 127 (1), 210-216.
    34. Moses, J. E.; Moorhouse, A. D., The growing applications of click chemistry. Chemical Society reviews 2007, 36 (8), 1249-62.
    35. Anseth, K. S.; Klok, H.-A., Click Chemistry in Biomaterials, Nanomedicine, and Drug Delivery. Biomacromolecules 2016, 17 (1), 1-3.
    36. Kolb, H. C.; Sharpless, K. B., The growing impact of click chemistry on drug discovery. Drug discovery today 2003, 8 (24), 1128-37.
    37. Shi, H.; Zhang, C. J.; Chen, G. Y.; Yao, S. Q., Cell-based proteome profiling of potential dasatinib targets by use of affinity-based probes. J Am Chem Soc 2012, 134 (6), 3001-14.
    38. Thinon, E.; Serwa, R. A.; Broncel, M.; Brannigan, J. A.; Brassat, U.; Wright, M. H.; Heal, W. P.; Wilkinson, A. J.; Mann, D. J.; Tate, E. W., Global profiling of co- and post-translationally N-myristoylated proteomes in human cells. Nature communications 2014, 5, 4919.
    39. Lang, K.; Davis, L.; Wallace, S.; Mahesh, M.; Cox, D. J.; Blackman, M. L.; Fox, J. M.; Chin, J. W., Genetic Encoding of bicyclononynes and trans-cyclooctenes for site-specific protein labeling in vitro and in live mammalian cells via rapid fluorogenic Diels-Alder reactions. J Am Chem Soc 2012, 134 (25), 10317-20.
    40. Chen, I.; Ting, A. Y., Site-specific labeling of proteins with small molecules in live cells. Curr Opin Biotechnol 2005, 16 (1), 35-40.
    41. Ong, S. E.; Blagoev, B.; Kratchmarova, I.; Kristensen, D. B.; Steen, H.; Pandey, A.; Mann, M., Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Molecular & cellular proteomics : MCP 2002, 1 (5), 376-86.
    42. Klein, S.; Wolfe, R. R., Carbohydrate restriction regulates the adaptive response to fasting. The American journal of physiology 1992, 262 (5 Pt 1), E631-6.
    43. Hnatowich, D. J.; Layne, W. W.; Childs, R. L.; Lanteigne, D.; Davis, M. A.; Griffin, T. W.; Doherty, P. W., Radioactive labeling of antibody: a simple and efficient method. Science 1983, 220 (4597), 613-5.
    44. Suchanek, M.; Radzikowska, A.; Thiele, C., Photo-leucine and photo-methionine allow identification of protein-protein interactions in living cells. Nature methods 2005, 2 (4), 261-7.
    45. Martell, J.; Weerapana, E., Applications of copper-catalyzed click chemistry in activity-based protein profiling. Molecules (Basel, Switzerland) 2014, 19 (2), 1378-93.
    46. Baskin, J. M.; Bertozzi, C. R., Bioorthogonal Click Chemistry: Covalent Labeling in Living Systems. QSAR & Combinatorial Science 2007, 26 (11-12), 1211-1219.
    47. Soriano del Amo, D.; Wang, W.; Jiang, H.; Besanceney, C.; Yan, A. C.; Levy, M.; Liu, Y.; Marlow, F. L.; Wu, P., Biocompatible Copper(I) Catalysts for in Vivo Imaging of Glycans. Journal of the American Chemical Society 2010, 132 (47), 16893-16899.
    48. Wang, X.; Liu, L.; Luo, Y.; Zhao, H., Bioconjugation of biotin to the interfaces of polymeric micelles via in situ click chemistry. Langmuir : the ACS journal of surfaces and colloids 2009, 25 (2), 744-50.
    49. Taylor, J. R.; Fang, M. M.; Nie, S., Probing Specific Sequences on Single DNA Molecules with Bioconjugated Fluorescent Nanoparticles. Analytical chemistry 2000, 72 (9), 1979-1986.
    50. Xing, Y.; Chaudry, Q.; Shen, C.; Kong, K. Y.; Zhau, H. E.; Chung, L. W.; Petros, J. A.; O'Regan, R. M.; Yezhelyev, M. V.; Simons, J. W.; Wang, M. D.; Nie, S., Bioconjugated quantum dots for multiplexed and quantitative immunohistochemistry. Nature protocols 2007, 2 (5), 1152-65.
    51. Elliott, M. H.; Smith, D. S.; Parker, C. E.; Borchers, C., Current trends in quantitative proteomics. Journal of mass spectrometry : JMS 2009, 44 (12), 1637-60.
    52. Fauq, A. H.; Kache, R.; Khan, M. A.; Vega, I. E., Synthesis of Acid-Cleavable Light Isotope-Coded Affinity Tags (ICAT-L) for Potential Use in Proteomic Expression Profiling Analysis. Bioconjugate Chemistry 2006, 17 (1), 248-254.
    53. Handwerger, R. G.; Diamond, S. L., Biotinylated photocleavable PEI: Capture and triggered release of nucleic acids from solid supports. Bioconjug Chem 2007, 18 (3), 717-23.
    54. Olejnik, J.; Sonar, S.; Krzymanska-Olejnik, E.; Rothschild, K. J., Photocleavable biotin derivatives: a versatile approach for the isolation of biomolecules. Proceedings of the National Academy of Sciences of the United States of America 1995, 92 (16), 7590-4.
    55. Nessen, M. A.; Kramer, G.; Back, J.; Baskin, J. M.; Smeenk, L. E.; de Koning, L. J.; van Maarseveen, J. H.; de Jong, L.; Bertozzi, C. R.; Hiemstra, H.; de Koster, C. G., Selective enrichment of azide-containing peptides from complex mixtures. Journal of proteome research 2009, 8 (7), 3702-11.
    56. Hsu, J.-L.; Huang, S.-Y.; Chen, S.-H., Dimethyl multiplexed labeling combined with microcolumn separation and MS analysis for time course study in proteomics. Electrophoresis 2006, 27 (18), 3652-3660.
    57. Hsu, J. L.; Huang, S. Y.; Chow, N. H.; Chen, S. H., Stable-isotope dimethyl labeling for quantitative proteomics. Analytical chemistry 2003, 75 (24), 6843-52.
    58. Wiese, S.; Reidegeld, K. A.; Meyer, H. E.; Warscheid, B., Protein labeling by iTRAQ: a new tool for quantitative mass spectrometry in proteome research. Proteomics 2007, 7 (3), 340-50.

    下載圖示 校內:2021-09-03公開
    校外:2021-09-03公開
    QR CODE