| 研究生: |
謝素妮 Hsieh, Su-ni |
|---|---|
| 論文名稱: |
應用支援向量機於偵測加入連串規則的Hotelling’s T2管制圖之平均值偏移 Applying Support Vector Machines to Detect the Mean Shifts in Hotelling’s T2 Control Chart with Sensitizing Rules |
| 指導教授: |
王泰裕
Wang, Tai-yue |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 工業與資訊管理學系 Department of Industrial and Information Management |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 61 |
| 中文關鍵詞: | 類神經網路 、支援向量機 、連串規則 、Hotelling’s T2管制圖 |
| 外文關鍵詞: | Support vector machines, Sensitizing rules, Hotelling’s T2 control chart, Neural networks |
| 相關次數: | 點閱:65 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
就現代產業而言,管制圖(Control Charts)為品質管理最常使用的手法之一。由於產品日漸複雜且各品質特性間通常具有一定程度的相關性,因此會採用多變量管制圖(Multivariate Control Charts)來避免誤判的情形發生。Hotelling's T^2為目前最普遍使用的多變量管制圖,但其在製程平均值為中小幅度偏移的情形下,偵測效果不佳,因此可加入連串規則(Sensitizing Rules)來提升偵測的能力。另外,當Hotelling's T^2管制圖偵測出製程發生異常時,無法直接獲得相關的資訊,通常需透過計算繁複的分解法或主成分分析來解決,且這些方法只能提供造成製程異常的品質特性,不能獲得更多的異常資訊。所以有學者結合類神經網路的學習能力,建構出多變量管制圖來監控即時線上的作業系統。在類神經網路中,因支援向量機為基於邊際最大化(Margin Maximum)的理論找出最佳的超平面來進行分類,故在分類上有相對較優的效果。本研究加入連串規則提高Hotelling's T^2管制圖的偵測效能,並結合支援向量機來辨識出造成製程異常的品質特性以及其平均值偏移量的大小。實驗結果指出,支援向量機可以有效地判斷造成製程異常來源以及平均值偏移的幅度。
In many industries, control charts is one of the most frequently used tools for quality management. Because of the complexity of product and the correlation of the characteristics, using multivariate control charts can avoid misleading results. The most widely used multivariate control chart is Hotelling's T^2. However, it has little power when detecting small or moderate process shifts. The use of supplementary sensitizing rules can improve the performance of detection. When Hotelling's T^2 control chart detects the signal of process, it usually accesses the relevant information through the decomposition technique or principal analysis. Unfortunately, these techniques only provide information that which characteristic(s) contributed to the signal, and can't offer advanced information. Therefore, application of neural networks to multivariate control chart has been investigated by several researchers. Support vector machines bases on the theory of margin maximum to find the best hyperplane, so it has better rate of accuracy classification than other neural networks methods. This study supplements sensitizing rules to Hotelling's T^2 control chart to improve the performance of detection, and combines with support vector machines to identify the characteristic or group of characteristics that are responsible for the signal and to classify the magnitude of the mean shifts. The experimental results demonstrate that the support vector machines can effectively identify the characteristic or group of characteristics that caused the process mean shifts and the magnitude of the shifts.
中文文獻
葉怡成 (2003),“類神經網路模式應用與實作”,儒林出版社,台北市
邱靜娥、陳世輝和江桂霖 (2006),應用類神經網路與連串規則於Hotelling’s T2管制圖,中華民國品質學會第42屆年會暨第12屆全國品質管理研討會,國立雲林科技大學工業工程與管理研究所
英文文獻
Aparisi, F., Champ, C.W., and García-Díaz, J.C. (2004). A Performance Analysis of Hotelling's Chi-square Control Chart with Supplementary Runs Rules. Quality Engineering, 16(3), 359-368.
Bersimis, S.P.J.P. S. (2007). Multivariate statistical process control charts: an overview. Quality and Reliability Engineering International, 23(5), 517-543.
Chang, C.-C., and Lin, C.-J. LIBSVM : a library for support vector machines. Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm.
Chang, S.I., and Aw, C.A. (1996). A neural fuzzy control chart for detecting and classifying process mean shifts. International Journal of Production Research, 34(8), 2265-2278.
Chen, L.- H., and Wang, T.- Y. (2004). Artificial neural networks to classify mean shifts from multivariate chi-square chart signals. Computers & Industrial Engineering, 47(2-3), 195-205.
Chinnam, R.B. (2002). Support vector machines for recognizing shifts in correlated and other manufacturing processes. International Journal of Production Research, 40, 4449-4466.
Cristianini, N. and Shawe-Taylor, J. (2000). An introduction to support vector machines : and other kernel-based learning methods, Cambridge University Press, Cambridge; New York.
Dedeakayoğullari, İ., and Burnak, N. (1999). The determination of mean and or variance shifts with artificial neural networks. International Journal of Production Research, 37(10), 2191-2200.
Guh, R.-S. (2007). On-line Identification and Quantification of Mean Shifts in Bivariate Processes using a Neural Network-based Approach. Quality and Reliability Engineering International, 23(3), 367-385.
Hsu, C.-W., and Lin, C.-J. (2002). A comparison of methods for multiclass support vector machines. Neural Networks, IEEE Transactions on, 13(2), 415-425.
Hwarng, H.B. (2004). Detecting process mean shift in the presence of autocorrelation: a neural-network based monitoring scheme. International Journal of Production Research, 42(3), 573-595.
Kumar, S. (2004). Neural networks : a classroom approach, Tata McGraw-Hill, New Delhi.
Lowry, C.A., and Montgomery, D.C. (1995). A review of multivariate control charts. IIE Transactions, 27(6), 800-810.
Montgomery, D.C. (2001). Introduction to Statistical Quality Control, John Wiley, New York.
Platt, J.C., Christianini, N., and Shawe-Taylor, J. (2000). Large Margin DAGs for Multiclass Classification. in "Advances in Neural Information Processsing Systems", Cambridge, MA: MIT Press.
Sun, R., and Tsung, F. (2003). A kernel-distance-based multivariate control chart using support vector methods. International Journal of Production Research, 41, 2975-2989.
Wang, T.-Y., and Chen, L.-H. (2002). Mean shifts detection and classification in multivariate process: a neural-fuzzy approach. Journal of Intelligent Manufacturing, 13(3), 211-221.
Yang, Y. (1999). An Evaluation of Statistical Approaches to Text Categorization. Information Retrieval, 1(1), 69-90.
Zorriassatine, F., and Tannock, J.D.T. (1998). A review of neural networks for statistical process control. Journal of Intelligent Manufacturing, 9(3), 209-224.