| 研究生: |
呂罡銘 Lu, Kang-Ming |
|---|---|
| 論文名稱: |
應用衛星遙測技術解析都市土地覆蓋與地表輻射熱平衡之關係 A study on the relationship between urban land covers and surface radiant heat balance by remote sensing technique |
| 指導教授: |
林憲德
Lin, Hsien-Te |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
規劃與設計學院 - 建築學系 Department of Architecture |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 142 |
| 中文關鍵詞: | 土地覆蓋 、都市熱島效應 、衛星遙測 、S-SEBI 、人造表面覆蓋率 |
| 外文關鍵詞: | Land cover, urban heat island effect, satellite remote sensing, simple-surface energy balance indexes (S-SEBI), artificial cover ratio |
| 相關次數: | 點閱:159 下載:15 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究應用衛星遙測影像解析法,使用FORMOSAT-2 MS衛星影像,繪製台北市、台中市、台南市與高雄市各行政區土地覆蓋、人造表面覆蓋率、綠覆率與藍綠覆率等數值圖,彙整各市政府統計要覽資料,解析人造表面覆蓋率之迴歸預測公式,作為都市規劃者在描述、預測與改善都市人造表面覆蓋率之參考。
為了更深入探討都市土地覆蓋與地表輻射熱平衡之關係,本研究根據簡化地表能量平衡指標(S-SEBI)理論,針對都市熱島強度最強的台北市夏季都市熱島效應,使用Landsat 5 TM影像與地面氣象站資料,繪製地表溫度、地表與空氣溫差、氣溫、地表反照率、地表放射率、蒸發散比、淨吸收輻射、短波輻射、長波輻射、地面吸收熱、顯熱、潛熱、人造表面覆蓋率、綠覆率與藍綠覆率等數值圖,解析地表溫度迴歸預測公式、地表與空氣溫差迴歸預測公式以及氣溫迴歸預測公式,估算各類土地覆蓋淨吸收輻射分配給地面吸收熱、顯熱與潛熱的比例,描繪土地覆蓋與地表輻射熱平衡指標在都市平面與剖面上的關係,作為政府或學術單位,在擬定生態城市、都市退燒與綠建築相關政策的參考依據。本研究發現,與都市地表溫度或空氣溫度呈現正相關的因子,主要有都市人造表面率,呈現負相關的主要因子為都市藍綠覆率、地表蒸發散比與人造表面的反射率。
最後,根據研究成果,建議在都市計劃層級,擬定降低都市人造表面覆蓋率與增加都市藍綠覆率的政策;建議在建築管制層級,擬定基地保水、綠化、綠屋頂、綠能屋頂、冷屋頂與冷鋪面等政策與研究計畫,鼓勵民間、企業與學術單位,共同參與生態城市與綠建築推動方案。
FORMOSAT-2 MS imageries were used to calculate the digital maps of the urban land-cover, artificial cover ratio, green cover ratio, and blue and green cover ratio by satellite remote sensing technique to present the component of land-covers in Taipei City, Taichung City, Tainan City, and Kaohsiung City areas. Some regression equations for predicting artificial cover ratio were presented as the reference data for the urban planners to make the policies to improve the urban land cover environment.
In order to analyze the relationship between urban land covers and surface heat balance, Landsat 5 TM imageries were used to draw the digital maps of the surface temperature, air temperature, surface reflectance, surface emissivity, evaporative fraction, net radian, short wave radian, long wave radian, ground heat, sensible heat, latent heat, artificial cover ratio, green cover ratio, and blue and green cover ratio according to simple-surface heat balance indexes theory (S-SEBI). The profiles of urban surface temperature, air temperatures and relative S-SEBI were drawn to present the relationship between urban land-covers and surface heat balance. In the other hand, the regression equations for predicting urban surface temperature, air temperature, and the difference between surface and air temperature were also addressed to present the influence of each variables.
Finally, some suggestion of decreasing artificial cover ratio, increasing blue and green cover ratio, enhancing the evaporative fraction of land-covers, improving the surface reflectance of artificial covers, such as green roof, green-energy roof, cool roof, and cool pavement et al., were recommended for the government to promote the eco-city, cool city, and green building policies.
1. 丁凤, and徐涵秋, 2008: 基于Landsat TM的3种地表温度反演算法比较分析. 福建师范大学学报(自然科学版), 24, 91-96.
2. 內政部建築研究所, 2007. 綠建築解說與評估手冊, 台北市, 內政部建築研究所.
3. 日経BP社, 2003. 屋上綠化, 日経BP社.
4. 台中市政府, 2008. 台中市中華民國九十七年度統計年報, 台中市.
5. 台北市政府, 2008. 台北市中華民國九十六年度統計年報, 台北市.
6. 台南市政府, 2006. 台南市中華民國九十五年度統計要覽, 台南市.
7. 余竹樺, 劉說安與張子瑩, 2009. 利用MODIS影像反演嘉義地區水稻田蒸發散量之研究, 航測及遙測學刊, 12, 319-334.
8. 呂罡銘, 林憲德, 孫振義, 劉正千與陳瑞鈴, 2011.都市人造表面覆蓋率之解析、預測與控制. 都市與計劃,38(2),171-193。
9. 李魁鵬, 1999. 台灣四大都會區都市熱島之研究. 博士, 國立成功大學.
10. 李魁鵬與林憲德, 1999. 台灣四大都會區都市熱島效應實測解析(二)--夏季都市熱島時空分佈特性之初步解析. 建築學報, 31, 75-90.
11. 杜榮鴻, 2005. 應用MODIS影像估算潛勢蒸發散量之研究. 碩士, 國立成功大學.
12. 林子平, 2005. 農村住宅綠建築基地保水指標評估之研究. 中華水土保持學報, 36, 375-385.
13. 林子平, 何友鋒與楊鴻銘, 2005. 都市地表不透水率之預估與分析:以台中市為例. 都市與計劃, 32, 333-335.
14. 林子平, 林憲德與李仁豪, 2001. 台南市都市環境透水性能實測解析. 都市與計劃, 28, 211~235.
15. 林憲德, 呂罡銘, 孫振義, 劉正千與何明錦 2008. 應用衛星遙測與影像分類技術估算台南市地表不透水率. 都市與計劃, 35, 123-139.
16. 林憲德, 李魁鵬, 陳冠廷, 林立人, 郭曉青與陳子謙, 1999. 台灣四大都會區都市熱島效應實測解析(一). 建築學報, 31, 51-73.
17. 林憲德, 孫振義, 李魁鵬與郭曉青, 2005. 台南地區都市規模與都市熱島強度之研究. 都市與計劃, 32, 83-97.
18. 林憲德, 郭曉青, 李魁鵬, 陳子謙與陳冠廷, 2001. 台灣海岸型城市之都市熱島現象與改善對策解析一以台南、高雄及新竹為例. 都市與計劃, 28, 323-341.
19. 林憲德, 陳冠廷與郭曉青, 2001. 台灣中型都市熱島現象與土地利用之觀測解析. 規劃學報, 47-64.
20. 林憲德與林子平, 2001. 基地保水性能評估之研究. 都市與計劃, 38, 67-68.
21. 姜善鑫, 盧光輝與武克茂, 1995. 台灣西部地區都市熱島效應之研究. 國立台灣大學地理學報, 18, 23-24.
22. 柯亙重與張書芸, 2004. 高雄地區夏季地表氣溫分布之觀測解析. 環境與世界, 9, 83-106.
23. 范紹佳, 董娟, 郭璐璐, 王安宇, 宋麗莉, 劉愛君與謝艱衛, 2005. 城市發展對廣州溫度場影響的分析. 熱帶氣象學報, 21, 623-627.
24. 孫振義, 2008. 運用遙測技術於都市熱島效應之研究. 博士論文, 國立成功大學.
25. 孫振義, 林憲德, 呂罡銘, 劉正千與陳瑞鈴, 2010. 台南市地表溫度與地表覆蓋關係之研究. 都市與計劃, 37, 369-391.
26. 孫振義與林憲德, 2006. 台南地區都市熱島強度全年變動之研究. 都市與計劃, 33, 51-68.
27. 徐森雄與唐琦, 1994. 台北市之都市化對氣溫變化之影響. 氣象學報, 40, 296-299.
28. 高雄市政府, 2008. 高雄市民國九十七年度統計年報. 高雄市.
29. 國松孝男等, 1988. 都市の水環境の創造, 技報堂.
30. 張子瑩, 2010. 應用遙測影像於地表熱通量平衡之研究. 博士, 國立中央大學.
31. 張子瑩與劉說安, 2005. 利用Landsat資訊反演大氣溫度以評估熱島效應之強度. 航測及遙測學刊, 10, 385-392.
32. 郭柏巖, 2000. 都市公園微氣候觀測解析. 碩士, 國立成功大學.
33. 陳奕穎, 2004. 發展遙測資料反演可感熱與潛熱通量之研究. 碩士, 國立中央大學.
34. 陳姜琦, 2002. 應用衛星遙測於區域蒸發散量之估算. 碩士, 國立成功大學.
35. 陳順宇, 2009. 迴歸分析 四版, 台北市,台灣, 三民書局.
36. 陳麒文, 2004. 溫度對尖峰負載及節約能源的影響. 能源節約技術報導, 52, 18-25.
37. 覃志豪, Wenjuan, L., Minghua, Z., Karnieli, A., andBerliner, P., 2003: 单窗算法的大气参数估计方法. 国土资源遥感, 2, 37-43.
38. 黃光宇, 1989. 田園城市•綠心城市•生態城市. 重慶建築工程學院學報, 14, 63-71.
39. 黃書禮, 翁瑞豪與陳子淳, 1997. 台北市永續發展指標系統之建立與評估. 都市與計劃, 24, 23-42.
40. 鄒克萬與黃書偉, 2007. 都市土地利用變遷對自然環境衝擊之空間影響分析. 地理學報, 48, 1-18.
41. 劉志武, 黨安榮, 雷志棟與黃聿剛, 2003. 利用ASTER遙感數據反演路面溫度的算法及應用研究. 地理科學進展, 22, 507-514.
42. 鍾譯靚, 2001. 利用衛星遙測估算蒸發散量與熱通量之研究. 碩士, 國立台灣大學.
43. 钟耀武, 刘良云, 王纪华 與 阎广建, 2006a. SCS+C地形辐射校正模型的应用分析研究. 國土資源遙感, 4: 14-18.
44. 黄妙芬, 邢旭峰, 王培娟, and王昌佐, 2006: 利用LANDSAT/TM热红外通道反演地表温度的三种方法比较. 干旱区地理, 29, 132-137.
45. Akbari, H., Menon, S. & Rosenfeld, A. 2009. Global cooling: Increasing world-wide urban albedos to offset CO2. Climate Change, 94, 275– 286.
46. Allen, R. G., A., M., Tasumi, M., Bastiaanssen, W. G. M., Kramber, W. & Anderson, H. 2001. Satellite-based energy balance for mapping evapotranspiraton with internalized calibration (METRIC)-model. Journal of Irrigation and Drainage Engineering, 133, 380-394.
47. Baric, B., Kontic, J. K. & Pajac, I. 2008. Influence of the Green Cover as Ecological Infrastructure on the Vineyard Insect Complex. Cereal Research Communications, 36, 35-38.
48. Bastiaanssen, W. G. M. 2000. SEBAL-based sensible and latent heat fluxes in the irrigated Gediz Basin, Turkey. Journal of Hydrology, 229, 87-100.
49. Bastiaanssen, W. G. M., Menenti, M., Feddes, R. A. & Holtslag, A. A. M. 1998a. A remote sensing surface energy balance algorithm for land (SEBAL) - 1. Formulation. Journal of Hydrology, 213, 198-212.
50. Bastiaanssen, W. G. M., Pelgrum, H., Wang, J., Ma, Y., Moreno, J. F., Roerink, G. J. & Wal, T. V. D. 1998b. A remote sensing surface energy balance algorithm for land (SEBAL) - 2. Validation. Journal of Hydrology, 213, 213-229.
51. Bastin, L. & Thomas, C. D. 1999. The distribution of plant species in urban vegetation fragments. Landscape Ecology, 14, 493-507.
52. Bielmann, M., Kato, S., Mauron, P., Borgschulte, A. & Zuttel, A. 2009. Characterization of hydrogen storage materials by means of pressure concentration isotherms based on the mass flow method. Review of Scientific Instruments, 80, -.
53. Bodamer, D. 2001. New satellite maps pinpoint storm-water runoff. Civil Engineering, 71, 33-33.
54. Brander, K. E., Owen, K. E. & Potter, K. W. 2004. Modeled impacts of development type on runoff volume and infiltration performance. Journal of the American Water Resources Association, 40, 961-969.
55. Brutsaert, W., 1982. Evaporation into the Atmosphere: Theory, History and Applications (Environmental Fluid Mechanics) Kluwer Academic Publishers.
56. Calera, A., Martinez, C. & Melia, J. 2001. Technical note - A procedure for obtaining green plant cover: relation to NDVI in a case study for barley. International Journal of Remote Sensing, 22, 3357-3362.
57. Carlson T. N. 2004. Analysis and prediction of surface runoff in an urbanizing watershed using satellite imagery. Journal of the American Water Resources Association, 40, 1087-1098.
58. Chander, G., Markham, B. L. & Helder, D. L. 2009. Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM and EO-1 ALI sensors. Remote Sensing of Environment, 113, 893-903.
59. Chander, G., and Markham, B., 2003: Revised Landsat-5 TM Radiometric Calibration Procedures and Postcalibration Dynamic Ranges. IEEE Transactions on Geoscience and Remote Sensing, 41(11), 2674-3677.
60. Chang, C. H., Liu, C. C., Wen, C. G., Cheng, I. F., Tam, C. K. & Huang, C. S. 2009. Monitoring reservoir water quality with Formosat-2 high spatiotemporal imagery. Journal of Environmental Monitoring, 11, 1982-1992.
61. Chang, T.-Y., Liou, Y.-A., Lin, C.-Y., Liu, S.-C. and Wang, Y.-C..2010. Evaluation of surface heat fluxes in Chiayi plain of Taiwan by remotely sensed data. International Journal of Remote Sensing, 31(14): 3885–3898.
62. Chen, X. L., Zhao, H. M., LI, P. X. & Yin, Z. Y. 2006. Remote sensing image-based analysis of the relationship between urban heat island and land use/cover changes. Remote Sensing of Environment, 104, 133-146.
63. Chen, X. X., Vierling, L., Rowell, E. & Defelice, T. 2004. Using lidar and effective LAI data to evaluate IKONOS and Landsat 7 ETM+ vegetation cover estimates in a ponderosa pine forest. Remote Sensing of Environment, 91, 14-26.
64. Chormanski, J., Van De Voorde, T., De Roeck, T., Batelaan, O. & Canters, F. 2008. Improving distributed runoff prediction in urbanized catchments with remote sensing based estimates of impervious surface cover. Sensors, 8, 910-932.
65. Choudhury, B. J. 1989. Estimating evaporation and carbon assimilation using infrared temperature data. In: Asrar, G. (Ed.). New York, Wiley.
66. Clapham, W. B. 2003. Continuum-based classification of remotely sensed imagery to describe urban sprawl on a watershed scale. Remote Sensing of Environment, 86, 322-340.
67. Cleugh, H. A., Leuning, R., Mu, Q. Z. & Running, S. W. 2007. Regional evaporation estimates from flux tower and MODIS satellite data. Remote Sensing of Environment, 106, 285-304.
68. Cooper, P. I. 1969. The absortion of radiation in solar stills. Solar Energy, 12, 333-346.
69. Deblonde, G., and Cihlar, J. 1993. A multiyear analysis of the relationship between surface environmental variables and NDVI over the Canadian landmass. Remote Sensing Reviews, 7: 151–177.
70. Descroix, V. J. M., Lezot, F., Hotton, D., Kato, S. & Berdal, A. 2009. Cumulative influence of calcemia and vitamin D on mouse dentition. Bone, 44, S365-S366.
71. Duffie, J. & Beckman, W. 1980. Solar Engineering of Thermal Processes, New York, John Wiley and Sons.
72. Eumorfpoulou, E. & Aravantinos, D. 1998. The contribution of a planted roof to the thermal protection of buildings in Greece. Energy and Buildings, 27, 29-36.
73. Fan, L., Liu, S., Bernhofer, C., Liu, H. & Berger, F. H. 2007. Regional land surface energy fluxes by satellite remote sensing in the Upper Xilin River Watershed (Inner Mongolia, China). Theoretical and Applied Climatology, 88, 231-245.
74. Farooq, S. & Ahamad, S. 2008. Urban Sprawl Development Around Aligarh City: A Study Aided by Satellite Remote Sensing and GIS. Photonirvachak-Journal of the Indian Society of Remote Sensing, 36, 77-88.
75. Fisrwg, F. I. S. R. W. G. 1998. Stream Corridor Restoration: Principles, Processes, and Practices.
76. French, A. N., Schmugge, T. J. & Kustas, W. P. 2000. Estimating surface fluxes over the SGP site with remotely sensed data Physics and Chemistry of the Earth Part B-Hydrology Oceans and Atmosphere. Ocean & Coastal Management, 25, 167-172.
77. Fung, T. & Siu, W. 2000. Environmental quality and its changes, an analysis using NDVI. International Journal of Remote Sensing, 21, 1011-1024.
78. Gamon, J. A., Green, R. O., Roberts, D. A., and Serrano, L. 1995, August 28–30. Deriving photosynthetic function from calibrated imaging spectrometry. In G. Guyot (Ed.), Photosynthesis and remote sensing, pp.55–60. France: Montpellier.
79. Garatuza-Payan, J. & Watts, C. J. 2005. The use of remote sensing for estimating ET of irrigated wheat and cotton in Northwest Mexico. Irrigation and Drainage Systems, 19, 301-320.
80. Gieske, A. 2003. The iterative flux-profile method for remote sensing applications. International Journal of Remote Sensing, 24, 3291-3309.
81. Goetza, S. J.; Wright, R. K.; Smith,A. J.; Zinecker, Elizabeth, & Schaub, Erika, 2003. IKONOS imagery for resource management: Tree cover, impervious surfaces, and riparian buffer analyses in the mid-Atlantic region, Remote Sensing of Environment, 88(1-2): 195–208.
82. Granger, R. J. 2000. Satellite-derived estimates of evapotranspiration in the Gediz basin. Journal of Hydrology, 229, 70-76.
83. Hall, M. J. 1973. The hydrological consequences of urbanization: an introductory note. In construction industry research and information association. Urban Hydrology, Bristol, 10.
84. Harris, P. M., & Ventura, S. J., 1995. The integration of geographic data with remotely sensed imagery to improve classification in an urban area, Photogrammetric Engineering and Remote Sensing, August, 993–998.
85. Hasse, J. E. & Lathrop, R. G. 2003. Land resource impact indicators of urban sprawl. Applied Geography, 23, 159-175.
86. Hirzel, A. H., Hausser, J., Chessel, D. & Perrin, N. 2002. Ecological-niche factor analysis: How to compute habitat-suitability maps without absence data? Ecology, 83, 2027-2036.
87. Howard, E. 1902. Garden Cities of To-Morrow, London.
88. Hung, M., & Ridd, M. K. (2002). A subpixel classifier for urban land-cover mapping based on a maximum-likelihood approach and expert system rules. Photogrammetric Engineering and Remote Sensing, 68, 1173–1180.
89. Jat, M. K., Garg, P. K. & Khare, D. 2008. Monitoring and modelling of urban sprawl using remote sensing and GIS techniques. International Journal of Applied Earth Observation and Geoinformation, 10, 26-43.
90. Jennings, D. B., Jarnagin, S. T. & Ebert, D. W. 2004. A modeling approach for estimating watershed impervious surface area from national land cover data 92. Photogrammetric Engineering and Remote Sensing, 70, 1295-1307.
91. Ji, W., Civco, D. L. & Kennaro, W. C. 1992. Satellite Remote Bathymetry - a New Mechanism for Modeling. Photogrammetric Engineering and Remote Sensing, 58, 545-549.
92. Ji, W., Ma, J., Twibell, R. W. & Underhill, K. 2006. Characterizing urban sprawl using multi-stage remote sensing images and landscape metrics. Computers Environment and Urban Systems, 30, 861-879.
93. Jonhson, N.L.; Kotz, S., & Balakrishnan, N., 1994. Continuous univariate distributions, John Willey and Sons, second ed.: Vol. 1.
94. Kallel, A., Le Hegarat-Mascle, S., OTTLE, C. & HUBERT-MOY, L. 2007. Determination of vegetation cover fraction by inversion of a four-parameter model based on isoline parametrization. Remote Sensing of Environment, 111, 553-566.
95. Kato, S. & Yamaguchi, Y. 2005. Analysis of urban heat-island effect using ASTER and ETM+ Data: Separation of anthropogenic heat discharge and natural heat radiation from sensible heat flux. Remote Sensing of Environment, 99, 44-54.
96. Kato, S. & Yamaguchi, Y. 2007. Estimation of storage heat flux in an urban area using ASTER data. Remote Sensing of Environment, 110, 1-17.
97. Kato, S. & Yamaguchi, Y., Liu, C. C. & Sun, C. Y. 2008. Surface heat balance analysis of Tainan City on March 6, 2001 using ASTER and Formosat-2 data. Sensors, 8, 6026-6044.
98. Kustas, W. P. & Norman, J. M. 1996. Use of remote sensing for evapotranspiration monitoring over land surfaces. Journal of Hydrological Sceiences, 41, 495-516.
99. Landsberg, H. E. & Brush, D. A. 1980. Some observations of the Baltimore, Md., heat island. Maryland: Inst. Phys. Sci. Technol.
100. Landsberg, H. E. 1981. The urban climate, New York, Academic Press, INC.
101. Landsat Project Science Office, 2002. Landsat 7 science Data User’s Handbook. Goddard Space Flight Center, Greenbelt, MD, USA..
102. Lillesand, T. M.; Kiefer, R. W., & Chipman, J. W., 2004. Remote sensing and image interpretation-fifth edition, Wiley, U.S.A..
103. Liu, X., Ren, L., Yuan, F., Singh, V. P., Fang, X., Yu, Z. & Zhang, W. 2009. Quantifying the effect of land use and land cover changes on green water and blue water in northern part of China. Hydrology and Earth System Sciences, 13, 735-747.
104. Lu, D. S., & Weng, Qihao, 2005. Urban classification using full spectral information of Landsat ETM+ imagery in Marion County, Indiana, Photogrammetric Engineering and Remote Sensing, November, 1275–1284.
105. Lu, D. S., and Weng, Q. H. 2006. Use of impervious surface in urban land-use classification. Remote Sensing of Environment, 102(1-2), 146-160.
106. Lu, D. S., Weng, Q. H. & Li, G. Y. 2006. Residential population estimation using a remote sensing derived impervious surface approach. International Journal of Remote Sensing, 27, 3553-3570.
107. Martinuzzi, S., Gould, W. A. & Gonzalez, O. M. R. 2007. Land development, land use, and urban sprawl in Puerto Rico integrating remote sensing and population census data. Landscape and Urban Planning, 79, 288-297.
108. Maselli, F., CONESE, C., Petkov, L. & Gilabert, M. A. 1992. Use of Noaa-Avhrr Ndvi Data for Environmental Monitoring and Crop Forecasting in the Sahel - Preliminary-Results. International Journal of Remote Sensing, 13, 2743-2749.
109. Mecikalski, J. R., Diak, G. R., Anderson, M. C. & Norman, J. M. 1999. Estimating fluxes on continental scales using remotely sensed data in an atmospheric-land exchange model. Journal of Applied Meteorology, 38, 1352-1369.
110. Menenti, M. & Choudhury, B. Year. Parameterization of land surface evaporation by means of location dependent potential evaporation and surface temperature range. In: IAHS conference on land surface processes, 1993. 561-568.
111. Menenti, M. & Ritchie, J. C. 1994. Estimation of effective aerodynamic roughness of Walnut Gulchwatershed with laser altimeter measurements. Water Resource Research, 30, 1329-1337.
112. Mentens, J., Raes, D. & Hermy, M. 2006. Green roofs as a tool for solving the rainwater runoff problem in the urbanized 21st century? Landscape and Urban Planning, 77, 217-226.
113. Mesev, V., 1998. The use of census data in urban image classification, Photogrammetric Engineering and Remote Sensing, May, 431–438.
114. Mildrexler, D. J., Zhao, M. S., Heinsch, F. A. & Running, S. W. 2007. A new satellite-based methodology for continental-scale disturbance detection. Ecological Applications, 17, 235-250.
115. Mood, A. M.; Graybill, F. A., & Boes, D. C., 1974. Introduction to the Theory of Statistics (Third Edition), McGraw-Hill, p. 241-246.
116. Moran, M. S. & Jackson, R. D. 1991. Assessing the spatial distribution of evapotranspiration using remotely sensed inputs. J. Environm. Quat., 20, 525-737.
117. Myint, S. W., 2001. A robust texture analysis and classification approach for urban land-use and land-cover feature discrimination, Geocarto International, 16(1), 27–38.
118. Myneni, R. B., Los, S. O., and Asrar, G. 1995. Potential gross primary productivity of terrestrial vegetation from 1982–1990. Geophyisical Research Letters, 22(1996): 2617–2620.
119. Nolin, A. W., & Payne, M. C., 2007. Classification of glacier zones in western Greenland using albedo, Remote Sensing of Environment, 107(1-2): 264–275.
120. Norman, J. M., Kustas, W. P. & Humes, K. S. 1995. Source approach for estimating soil and vegetation energy fluxes in observations of directional radiometric surface temperature. Agricultural and forest meteorology, 77, 263-293.
121. Oke, T. R., Spronken-Smith, R. A., Jauregut, E. & Grimmond, C. S. B. 1999. The energy balance of central Mexico City during the dry season. Atmospheric Environment, 33, 3919-3930.
122. Oleson, K. W., Bonan, G. B. & Feddema, J. 2010. Effects of white roofs on urban temperature in a global climate model. GEOPHYSICAL RESEARCH LETTERS, 37, L03701.
123. Ong, B. L. 2003. Green plot ratio: an ecological measure for architecture and urban planning. Landscape and Urban Planning, 63, 197-211.
124. Onmura, S., Matsumoto, M. & Hokoi, S. 2001. Study on evaporative cooling effect of roof lawn gardens. Energy and Buildings, 33, 653-666.
125. Pang, W. T., Fok, H. S. & Iz, H. B. 2008. Mapping impervious surface areas from GIS planimetric data. Survey Review, 40, 108-115.
126. Pauleit, S., Ennos, R. & Golding, Y. 2005. Modeling the environmental impacts of urban land use and land cover change - a study in Merseyside, UK. Landscape and Urban Planning, 71, 295-310.
127. Powell, R. L., Roberts, D. A., Dennison, P. E., & Hess, L. L.. 2007. Sub-pixel mapping of urban land cover using multiple endmember spectral mixture analysis : Manaus, Brazil, Remote Sensing of Environment, 106 (2): 253–267.
128. Prince, S. D., and Tucker, C. J. 1986. Satellite remote sensing of rangelands in Botswana: II. NOAA AVHRR and herbaceous vegetation. International Journal of Remote Sensing, 7: 1555–1570.
129. Qin, Z., Karnieli, A., and Berliner, P., 2001: A mono-window algorithm for retrieving land surface temperature from Landsat TM data and its application to the Israel-Egypt border region. International Journal of Remote Sensing, 22, 3719–3746.
130. Reese, H. and Olsson, H., 2011. C-correction of optical satellite data over alpine vegetation areas: A comparison of sampling strategies for determining the empirical c-parameter. Remote Sensing of Environment, 115: 1387–1400.
131. Ridd, M. K. 1995. Exploring a V-I-S (Vegetation-Impervious Surface-Soil) Model for Urban Ecosystem Analysis through Remote-Sensing - Comparative Anatomy for Cities. International Journal of Remote Sensing, 16, 2165-2185.
132. Roerink, G. J., SU, Z. & Menenti, M. 2000. S-SEBI: A Simple Remote Sensing Algorithm to Estimate the Surface Energy Balance. Physics and Chemistry of the Earth Part B-Hydrology Oceans and Atmosphere, 25, 147-157.
133. Rouse, J. W., Haas, R. W., Schell, J. A., Deering, D. W. & Harlan, J. C. 1974. Monitoring the vernal advancement and retrogradation (Green-wave effect) of natural vegetation. MD, USA: NASA/GSFC Type III Final Report.
134. Sailor, D. J. 1995. Simulated urban climate response to modifications in surface albedo and vegetative cover. Appl. Meteorl., 34.
135. Sandstrom, U. G., Angelstam, P. & Khakee, A. 2006. Urban comprehensive planning - identifying barriers for the maintenance of functional habitat networks. Landscape and Urban Planning, 75, 43-57.
136. Santos, C., Lorite, I. J., Tasumi, M., Allen, R. G. & Fereres, E. 2008. Integrating satellite-base evapotranspiration with simulation models for irrigation management at the scheme level. Irrigation Science, 26, 277-288.
137. Savini, J. 1961. Urban growth and the water regimen. US Geol. Survey, Water-Supply Paper, 43.
138. Sawaya, K. E.; Olmanson, L. G.; Heinert, N. J.; Brezonik, P. L., & Bauer, M. E., 2003. Extending satellite remote sensing to local scales land and water resource monitoring using high-resolution imagery, Remote Sensing of Environment, 88(1-2): 144–156.
139. Schueler, T. 1994. The importance of imperviousness. Watershed Protection Techniques, 1, 100-111.
140. Sellers, P. J. 1985. Canopy reflectance, photosynthesis and transpiration. International Journal of Remote Sensing, 6: 1335–1372.
141. Slegers, P.M., Wijffels, R.H., Straten, G.v. and Boxtel, A.J.B.v., 2011. Design scenarios for flat panel photobioreactors. Applied Energy, 88: 3342–3353.
142. Sobrino, J. A., Gomez, M., Jimenez-D Unoz, J. C. & Olioso, A. 2007. Application of a simple algorithm to estimate the daily evapotranspiration from NOAA-AVHRR images for the Lberian Peninsula. Remote Sensing of Environment, 110, 139-148.
143. Song, M., Civco, D. L. & Hurd, J. D. 2005. A competitive pixel-object approach for land cover classification. International Journal of Remote Sensing, 26, 4981-4997.
144. Stuckens, J.; Coppin, P. R., & Bauer, M. E., 2000. Integrating contextual information with per-pixel classification for improved land cover classification, Remote Sensing of Environment, 71(3): 282–296.
145. Su, Z. 2002. The surface energy balance system (SEBS) for estimation of turbulent heat fluxes. Hydrology and Earth System Sciences, 6, 85-99.
146. Synnefa, A., Dandou, A., Santamouris, M. & Tombrou, M. 2008. On the use of cool materials as a heat island mitigation strategy. J. Appl. Meteoral. Climatol., 47, 2846-2856.
147. Taha, H., Konopacki, S. & Gabersek, S. 1999. Imapcts of large-scale surface modifications on meteorological conditions and energy use: a 10-region modeling study. Theor. Appl. Climatol., 62, 175-185.
148. Teixeira, A. H. D. C., Bastiaanssen, G. M., Almadd, M. D. & Bos, M. G. 2009a. Reviewing SEBAL input parameters for assessing evapotranspiration and water productivity for the Low-Middle Sao Francisco river basin, Brazil Part B: Application to the regional scale. Agricultural and forest meteorology, 149, 477-490.
149. Teixeira, A. H. D. C., Bastiaanssen, W. G. M., Almadd, M. D. & Bos, M. G. 2009b. Reviewing SEBAL input parameters for assessing evapotranspiration and water productivity for the Low-Middle Sao Francisco river basin, Brazil Part A: Calibration and validation. Agricultural and forest meteorology, 149, 462-476.
150. Thompson, K., Austin, K. C., Smith, R. M., Warren, P. H., Angold, P. G. & Gaston, K. J. 2003. Urban domestic gardens (I): Putting small-scale plant diversity in context. Journal of Vegetation Science, 14, 71-78.
151. Thompson, S. K., 1992. Sampling, John Willey and Sons.
152. Timmermans, W. J., Kustas, W. P., Anderson, M. C. & French, A. N. 2007. An intercomparison of the Surface Energy Balance Algorithm for Land (SEBAL) and the Two-Source Energy Balance (TSEB) modeling schemes. Remote Sensing of Environment, 108, 369-384.
153. United Nations, 1997. Urban and rural areas 1996. ST/ESA/SER. A/166, Sales No. E.97.XIII.3.
154. Vahtmae, E., Kutser, T., Martin, G. & Kotta, J. 2006. Feasibility of hyperspectral remote sensing for mapping benthic macroalgal cover in turbid coastal waters - a Baltic Sea case study. Remote Sensing of Environment, 101, 342-351.
155. Voogt, J. A. 2004. Urban Heat Islands: Hotter Cities. An ActionBioscience.org original article,University of Western Ontario.
156. Whitford, V., Ennos, A. R. & Handley, J. F. 2001. "City form and natural process" - indicators for the ecological performance of urban areas and their application to Merseyside, UK. Landscape and Urban Planning, 57, 91-103.
157. Wong, N. H., Chen, Y., Ong, C. L. & Sia, A. 2003. Investigation of thermal benefits of rooftop garden in the tropical environment. Building and Environment, 38, 261-270.
158. Wu, C. S. 2004. Normalized spectral mixture analysis for monitoring urban composition using ETM plus imagery. Remote Sensing of Environment, 93, 480-492.
159. Wu, Changshan, & Murray, A. T., 2003. Estimating impervious surface distribution by spectral mixture analysis, Remote Sensing of Environment, 84(4): 493–505.
160. Wu, Changshan, 2004. Normalized spectral mixture analysis for monitoring urban composition using ETM+ imagery, Remote Sensing of Environment, 93(4): 480–492.
161. Xian, G. & Crane, M. 2005. Assessments of urban growth in the Tampa Bay watershed using remote sensing data, Remote Sensing of Environment, 99(1-2): 31–43.
162. Xian, G. & CRANE, M. 2006. An analysis of urban thermal characteristics and associated land cover in Tampa Bay and Las Vegas using Landsat satellite data. Remote Sensing of Environment, 104, 147-156.
163. Xiao, J. F. & Moody, A. 2005. A comparison of methods for estimating fractional green vegetation cover within a desert-to-upland transition zone in central New Mexico, USA. Remote Sensing of Environment, 98, 237-250.
164. Yu, B., Liu, H., Wu, J. and Lin, W.-M., 2009. Investigating impacts of urban morphology on spatio-temporal variations of solar radiation with airborne LIDAR data and a solar flux model: a case study of downtown Houston. International Journal of Remote Sensing, 30(17): 4359–4385.
165. Yuan, F. & Bauer, M. E. 2007. Comparison of impervious surface area and normalized difference vegetation index as indicators of surface urban heat island effects in Landsat imagery. Remote Sensing of Environment, 106, 375-386.
166. Zeng, H., Sui, D. Z. & Li, S. J. 2005. Linking urban field theory with GIS and remote sensing to detect signatures of rapid urbanization on the landscape: Toward a new approach for characterizing urban sprawl. Urban Geography, 26, 410-434.
167. Zhang, J., Wang, Y., andLi, Y., 2006: A C++ program for retrieving land surface temperature from the data of Landsat TM/ETM+ band6. Computers Geosciences, 32, 1796–1805.