簡易檢索 / 詳目顯示

研究生: 林柏宇
Lin, Po-Yu
論文名稱: 利用 3 Tesla 磁振造影達成大腦組織磁化率絕對定量
Quantitative Susceptibility Mapping of Human Brain by Magnetic Resonance Imaging at 3 Tesla
指導教授: 吳明龍
Wu, Ming-Long
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊工程學系
Department of Computer Science and Information Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 46
中文關鍵詞: 組織磁化率磁振造影QSM可重複性
外文關鍵詞: tissue susceptibility, MRI, QSM, reproducibility
相關次數: 點閱:125下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 大腦相關疾病通常伴隨病理上的變化,這些變化可透過磁振造影呈現。目前臨床檢驗方式為觀察magnitude與phase影像上數值變化,但先前研究顯示這些影像會隨著病人大腦掃描位置與主磁場角度不同而產生差異,進而影響臨床影像判讀。近幾年,Quantitative Susceptibility Mapping (QSM) 的方法被提出,藉由dipole model deconvolution,上述的主磁場角度影響可被降低,並且能對組織磁化率絕對定量,對於病程的進展有一定貢獻,因此此一方法逐漸被重視。然而QSM計算流程牽涉到許多步驟,其準確性即及可重複性仍需被探討。本研究透過數值模擬設計與仿體實驗驗證QSM準確性,並在 3 Tesla 磁場下探討正常受試者QSM的可重複性。實驗結果顯示著QSM能準確定量組織磁化率,並對於大腦疾病之病程發展研究發展深具潛力。

    Routine diagnosis of brain diseases using MRI mostly bases on magnitude and phase images. However, it has been known that image changes with the orientation of patient in the magnet and may become a confounding factor in clinical diagnosis. Through dipole model deconvolution, Quantitative Susceptibility Mapping (QSM) reduces the orientation dependence and achieves tissue susceptibility quantification. QSM potentially serves as a biomarker of disease. However, because QSM involves in many steps, the aim of this study was to investigate the accuracy and reproducibility of QSM. Numerical phantom simulation and phantom experiment were performed for accuracy study. In addition, QSM reproducibility was investigated with human subject study at 3 Tesla. Our results indicate that QSM is capable of accurate susceptibility quantification, which is of high potential for assessing neuronal diseases.

    摘要 i Abstract ii Acknowledgements iii Table of Contents iv List of Tables vi List of Figures vii Chapter 1 Introduction 1 1.1 Brain disease caused pathological changes 1 1.2 MRI in brain disease 2 1.3 Phase image and SWI 3 1.4 Quantitative susceptibility mapping (QSM) 4 1.5 QSM validation 5 Chapter 2 Theory and method 6 2.1 QSM procedure 6 2.2 Data acquisition 7 2.3 Field estimation 8 2.4 Magnetic field modeling 9 2.5 Background field removal 10 2.6 QSM method 12 2.6.1 Iterative susceptibility mapping 12 2.6.2 Fast susceptibility mapping 13 Chapter 3 Experiment design 15 3.1 Numerical phantom simulation 15 3.1.1 Phantom setup 15 3.1.2 Background field removal comparison 16 3.1.3 Susceptibility mapping accuracy test 17 3.1.4 SNR effect on QSM 17 3.2 Phantom experiment 18 3.2.1 Phantom preparing 18 3.2.2 Data analysis 19 3.3 Human subject study 20 3.3.1 Data acquisition 20 3.3.2 Data analysis 20 Chapter 4 Result 22 4.1 Numerical phantom simulation 22 4.1.1 Background field removal comparison 22 4.1.2 Susceptibility mapping accuracy test 24 4.1.3 SNR effect on QSM 28 4.2 Phantom experiment 31 4.3 Human subject study 33 Chapter 5 Discussion 38 5.1 Phase image, SWI and QSM 38 5.2 PDF and HPF methods for background field removal 38 5.3 Iterative and fast susceptibility mapping 39 5.4 Accuracy of QSM 39 5.5 Reproducibility of QSM 40 5.6 Confounded phase image 40 5.7 Flow-compensation 41 5.8 Future work 41 References 43

    [1] T. Liu, K. Surapaneni, M. Lou, L. Cheng, P. Spincemaille, and Y. Wang, "Cerebral microbleeds: burden assessment by using quantitative susceptibility mapping," Radiology, vol. 262, pp. 269-78, Jan 2012.
    [2] M. Alegre and M. Valencia, "Oscillatory activity in the human basal ganglia: More than just beta, more than just Parkinson's disease," Exp Neurol, Jun 10 2013.
    [3] A. Glatz, M. C. Valdes Hernandez, A. J. Kiker, M. E. Bastin, I. J. Deary, and J. M. Wardlaw, "Characterization of multifocal T2*-weighted MRI hypointensities in the basal ganglia of elderly, community-dwelling subjects," Neuroimage, vol. 82C, pp. 470-480, Jun 12 2013.
    [4] S. Kuroda, D. Kashiwazaki, T. Ishikawa, N. Nakayama, and K. Houkin, "Incidence, locations, and longitudinal course of silent microbleeds in moyamoya disease: a prospective T2*-weighted MRI study," Stroke, vol. 44, pp. 516-8, Feb 2013.
    [5] A. J. Walsh and A. H. Wilman, "Susceptibility phase imaging with comparison to R2 mapping of iron-rich deep grey matter," Neuroimage, vol. 57, pp. 452-61, Jul 15 2011.
    [6] J. Hagemeier, M. G. Dwyer, N. Bergsland, F. Schweser, C. R. Magnano, M. Heininen-Brown, et al., "Effect of Age on MRI Phase Behavior in the Subcortical Deep Gray Matter of Healthy Individuals," AJNR Am J Neuroradiol, May 30 2013.
    [7] L. F. Guo, J. Geng, M. H. Qiu, C. H. Mao, C. Liu, and L. Cui, "Quantification of Phase Values of Cerebral Microbleeds in Hypertensive Patients Using ESWAN MRI," Clin Neuroradiol, Jan 20 2013.
    [8] E. M. Haacke, Y. Xu, Y. C. Cheng, and J. R. Reichenbach, "Susceptibility weighted imaging (SWI)," Magn Reson Med, vol. 52, pp. 612-8, Sep 2004.
    [9] S. Mittal, Z. Wu, J. Neelavalli, and E. M. Haacke, "Susceptibility-weighted imaging: technical aspects and clinical applications, part 2," AJNR Am J Neuroradiol, vol. 30, pp. 232-52, Feb 2009.
    [10] A. Deistung, A. Schafer, F. Schweser, U. Biedermann, R. Turner, and J. R. Reichenbach, "Toward in vivo histology: a comparison of quantitative susceptibility mapping (QSM) with magnitude-, phase-, and R2*-imaging at ultra-high magnetic field strength," Neuroimage, vol. 65, pp. 299-314, Jan 15 2013.
    [11] A. Ignjatovic, Z. Stevic, S. Lavrnic, M. Dakovic, and G. Bacic, "Brain iron MRI: A biomarker for amyotrophic lateral sclerosis," J Magn Reson Imaging, Apr 5 2013.
    [12] W. Mohammed, H. Xunning, S. Haibin, and M. Jingzhi, "Clinical applications of susceptibility-weighted imaging in detecting and grading intracranial gliomas: a review," Cancer Imaging, vol. 13, pp. 186-95, 2013.
    [13] R. Cusack and N. Papadakis, "New Robust 3-D Phase Unwrapping Algorithms: Application to Magnetic Field Mapping and Undistorting Echoplanar Images," NeuroImage, vol. 16, pp. 754-764, 2002.
    [14] G. Gilbert, G. Savard, C. Bard, and G. Beaudoin, "Quantitative comparison between a multiecho sequence and a single-echo sequence for susceptibility-weighted phase imaging," Magn Reson Imaging, vol. 30, pp. 722-30, Jun 2012.
    [15] R. Salomir, B. D. de Senneville, and C. T. W. Moonen, "A fast calculation method for magnetic field inhomogeneity due to an arbitrary distribution of bulk susceptibility," Concepts in Magnetic Resonance, vol. 19B, pp. 26-34, 2003.
    [16] L. de Rochefort, T. Liu, B. Kressler, J. Liu, P. Spincemaille, V. Lebon, et al., "Quantitative susceptibility map reconstruction from MR phase data using bayesian regularization: validation and application to brain imaging," Magn Reson Med, vol. 63, pp. 194-206, Jan 2010.
    [17] F. Schweser, A. Deistung, B. W. Lehr, and J. R. Reichenbach, "Quantitative imaging of intrinsic magnetic tissue properties using MRI signal phase: an approach to in vivo brain iron metabolism?," Neuroimage, vol. 54, pp. 2789-807, Feb 14 2011.
    [18] T. Liu, J. Liu, L. de Rochefort, P. Spincemaille, I. Khalidov, J. R. Ledoux, et al., "Morphology enabled dipole inversion (MEDI) from a single-angle acquisition: comparison with COSMOS in human brain imaging," Magn Reson Med, vol. 66, pp. 777-83, Sep 2011.
    [19] K. Shmueli, J. A. de Zwart, P. van Gelderen, T. Q. Li, S. J. Dodd, and J. H. Duyn, "Magnetic susceptibility mapping of brain tissue in vivo using MRI phase data," Magn Reson Med, vol. 62, pp. 1510-22, Dec 2009.
    [20] B. Bilgic, I. Chatnuntawech, A. P. Fan, and E. Adalsteinsson, "Regularized QSM in Seconds " presented at the Intl. Soc. Mag. Reson. Med. , 2013.
    [21] K. E. Hammond, J. M. Lupo, D. Xu, M. Metcalf, D. A. Kelley, D. Pelletier, et al., "Development of a robust method for generating 7.0 T multichannel phase images of the brain with application to normal volunteers and patients with neurological diseases," Neuroimage, vol. 39, pp. 1682-92, Feb 15 2008.
    [22] E. M. Haacke, S. Mittal, Z. Wu, J. Neelavalli, and Y. C. Cheng, "Susceptibility-weighted imaging: technical aspects and clinical applications, part 1," AJNR Am J Neuroradiol, vol. 30, pp. 19-30, Jan 2009.
    [23] T. Liu, I. Khalidov, L. de Rochefort, P. Spincemaille, J. Liu, A. J. Tsiouris, et al., "A novel background field removal method for MRI using projection onto dipole fields (PDF)," NMR Biomed, vol. 24, pp. 1129-36, Nov 2011.
    [24] B. Kressler, L. de Rochefort, T. Liu, P. Spincemaille, Q. Jiang, and Y. Wang, "Nonlinear regularization for per voxel estimation of magnetic susceptibility distributions from MRI field maps," IEEE Trans Med Imaging, vol. 29, pp. 273-81, Feb 2010.
    [25] L. de Rochefort, R. Brown, M. R. Prince, and Y. Wang, "Quantitative MR susceptibility mapping using piece-wise constant regularized inversion of the magnetic field," Magn Reson Med, vol. 60, pp. 1003-9, Oct 2008.
    [26] S. Ropele, W. de Graaf, M. Khalil, M. P. Wattjes, C. Langkammer, M. A. Rocca, et al., "MRI assessment of iron deposition in multiple sclerosis," J Magn Reson Imaging, vol. 34, pp. 13-21, Jul 2011.
    [27] J. Li, S. Chang, T. Liu, Q. Wang, D. Cui, X. Chen, et al., "Reducing the object orientation dependence of susceptibility effects in gradient echo MRI through quantitative susceptibility mapping," Magn Reson Med, vol. 68, pp. 1563-9, Nov 2012.
    [28] T. Liu, C. Wisnieff, M. Lou, W. Chen, P. Spincemaille, and Y. Wang, "Nonlinear formulation of the magnetic field to source relationship for robust quantitative susceptibility mapping," Magn Reson Med, vol. 69, pp. 467-76, Feb 2013.
    [29] B. Xu, T. Liu, P. Spincemaille, and Y. Wang, "Flow Compensated Quantitative Susceptibility Mapping for Venous Oxygenation Imaging," presented at the Intl. Soc. Mag. Reson. Med., 2013.

    無法下載圖示 校內:2018-07-22公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE