| 研究生: |
張宏毅 Chang, Hong-Yi |
|---|---|
| 論文名稱: |
半導體設備維護工具管理之優化:現有資源有效利用 Optimizing Tooling Management for Semiconductor Equipment: Effective Utilization of Existing Resources |
| 指導教授: |
顏盟峯
Yen, Meng-Feng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 高階管理碩士在職專班(EMBA) Executive Master of Business Administration (EMBA) |
| 論文出版年: | 2026 |
| 畢業學年度: | 114 |
| 語文別: | 中文 |
| 論文頁數: | 80 |
| 中文關鍵詞: | 半導體設備 、工具管理 、資源優化 、共享工具 、效率提升 |
| 外文關鍵詞: | Semiconductor Equipment, Tooling Management, Resource Optimization, Shared Tooling, Efficiency Improvement |
| 相關次數: | 點閱:6 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究旨在檢驗筆者於2020年初導入個案公司之「共享工具管理模式」,以證明該模式運行多年後之成效,並結合學術理論來拓展新觀點,使其成為資源受限情境下之應用。
本研究以個案探討方式,針對半導體設備商在工具管理上面臨的挑戰,提出「問題分析—資源盤整—方法設計與執行」的研究架構。個案公司因應產業快速變動,投入大量資源採購維修與測試工具,但因缺乏統一管理,使得調度效率低落、工具遺失與重複採購、資產利用率低、風險控管困難等問題。研究經由工程師與物流人員訪談,將管理焦點聚焦於「共享工具」,並盤點現有資源,發現DHL物流合作具備跨廠運輸能力,但資訊整合仍有缺口。
本研究設計並導入「共享工具管理模式」,包含共享工具運送迴路與清單更新迴路,通過序號化、標籤化與物流紀錄整合,制定可追蹤、可視化的管理機制。模式導入後,工具共享效率(TSE)由1.19提升至3.26 (+174%),單位工具成本(CPIB)下降54%,工具投入效率(TEI)提升115%,顯示管理制度改革有效提升資源利用率並降低成本。成本彈性分析顯示,共享效率每增加1%,CPIB平均下降0.76%,形成高效率、低成本敏感的結構。
研究亦指出執行過程中存在登錄誤差、流程遵循不全、人員經驗差異等限制,建議未來導入自動化掃描、雲端同步、生命週期管理模組及教育訓練,並擴展至跨公司或跨地區共享平台。整體而言,本研究設計了一套具可行性、低成本、可擴充性的共享工具管理模式,為半導體產業資源管理提供重要參考。
This study aims to evaluate the efficiency of the “Shared Tooling Management Model” introduced by the author to the case company in early 2020. By examining its performance after several years of implementation and integrating relevant academic theories, the study seeks to extend new perspectives and position the model as an applicable approach in resource-constrained environments.
This study employs a case-based approach to address tooling management challenges in semiconductor equipment suppliers, proposing a framework that encompasses problem analysis, resource consolidation, and execution. Despite heavy investment in maintenance and testing tooling, the case company suffered from inefficient scheduling, tooling loss, and low utilization due to a lack of unified management. Interviews identified 'shared tooling' as the primary focus and DHL logistics as a transport partner, though information integration remained insufficient.
To address these issues, a 'Shared Tooling Management Model' featuring transport and inventory update loops was implemented. By utilizing serialization, labeling, and logistics record integration, a traceable management mechanism was established. Post-implementation results demonstrated significant improvements: tooling sharing efficiency (TSE) increased from 1.19 to 3.26 (+174%), tooling cost per machine (CPIB) decreased by 54%, and tooling investment efficiency (TEI) rose by 115%. Cost elasticity analysis further revealed that a 1% increase in sharing efficiency results in a 0.76% decrease in CPIB, indicating a structure sensitive to high efficiency.
Limitations identified include registration errors and incomplete adherence to the process. Recommendations include adopting automated scanning, cloud synchronization, and lifecycle management modules. Overall, the study presents a feasible, low-cost, and scalable model that offers valuable insights into resource management in the semiconductor industry.
工業技術研究院產業科技國際策略發展所(2024)。《2024 半導體產業年鑑》。工研院產科國際所。
工業技術研究院(2023)。〈波瀾壯闊的台灣半導體產業〉。《工業技術與資訊月刊》。
工業技術研究院產科國際所(2024)。〈洞悉2025年全球半導體產業趨勢與競爭力〉。
工研院、清華大學、中華經濟研究院(2023)。《台灣半導體產業面對國際政經環境變動的挑戰及因應》。中技社。
中華經濟研究院(2024)。〈AI 浪潮下臺灣半導體產業面臨的挑戰與機會〉。中經院產業觀測。
台灣經濟研究院(2024)。〈2024 年我國半導體業景氣與國際地位呈現雙升的局面〉。台經院產經資料庫。
江柏風 (2024)。全球半導體設備市場趨勢分析與展望。機械工業雜誌,第498期,2024年9月號。
呂政遠 (2022)。價值共創觀點之精實生產的研究-以ASML半導體製造設備商為例,國立成功大學企業管理學系在職專班碩士論文。
國家實驗研究院科技政策研究與資訊中心(2025)。〈現階段我國半導體業景氣趨勢之變化〉。iKnow科技產業資訊室。
黃俞文 (2025)。半導體設備商ESG 策略之比較分析:以Applied Materials、ASML 與Lam Research 為例 。國立陽明交通大學管理學院專班-科技管理學程碩士論文。
資策會產業情報研究所(2025)。〈2025 臺灣半導體產值達 5.45 兆新台幣成長 15.4%〉。MIC 新聞稿。
賴宛靖 (2024)。 AI、半導體加持機械產業樂觀看2025I,工業技術與資訊月刊,第391期 2024年12月號。
Angeles, R. (2005). RFID technologies: Supply-chain applications and implementation issues. Information Systems Management, 22(1), 51–65.
Brown, G. G., Geoffrion, A. M., & Bradley, G. H. (1981). Production and sales planning with limited shared tooling at the key operation. Management Science, 27(3), 247–259.
Dovere, E., Cavalieri, S., & Ierace, S. (2015). An assessment model for the implementation of RFID in tool management. IFAC-PapersOnLine, 48(3), 1007–1012.
Gopalakrishnan, P., & Banerji, A. K. (2013). Maintenance and spare parts management. PHI Learning Pvt.
Goulet, P.-A. (2025). Modernizing our land equipment tooling management approach: An operational readiness imperative (JCSP 51, Service Paper). Canadian Forces College.
Gray, A. E., Seidmann, A., & Stecke, K. E. (1993). A synthesis of decision models for tool management in automated manufacturing. Management Science, 39(5), 549–567.
Hirano, H. (1995). 5 pillars of the visual workplace: The sourcebook for 5S implementation. Productivity Press.
Ji, M., Ye, X., & Qian, F. (2022). Parallel-machine scheduling in shared manufacturing. Journal of Industrial and Management Optimization, 18(1), 681–691.
Kennedy, R. (2012). Maintenance management and regulatory compliance strategies. CRC Press.
Liu, P., Liu, C., & Wei, X. (2021). Optimal allocation of shared manufacturing resources based on bilevel programming. Discrete Dynamics in Nature and Society, 2021, Article ID 6474241.
Mobley, R. K. (2002). An introduction to predictive maintenance (2nd ed.). Elsevier.
Parida, A., & Kumar, U. (2006). Maintenance performance measurement (MPM): Issues and challenges. Journal of Quality in Maintenance Engineering, 12(3), 239–251.
Patil, A., Shaikh, M., Ambi, S., Jayappa, A., & Patil, R. (2024). Industrial tool & part management system. International Journal for Scientific Research & Development, 12(10), 1–4
Schreiber, M., Weisbrod, N., Ziegenbein, A., & Metternich, J. (2023). Tool management optimisation through traceability and data-based maintenance strategies. Production Engineering, 17, 185–195.
Tsarouhas, P. H. (2013). Application of maintenance management principles in the food industry. Journal of Quality in Maintenance Engineering, 19(4), 416–428.
Wang, G., Zhang, G., Guo, X., & Zhang, Y. (2021). Digital twin-driven service model and optimal allocation of manufacturing resources in shared manufacturing. Journal of Manufacturing Systems, 59, 165–179.
Wireman, T. (2004). Benchmarking best practices in maintenance management. Industrial Press.
Womack, J. P., & Jones, D. T. (2003). Lean thinking: Banish waste and create wealth in your corporation (2nd ed.). Free Press.
Yusuf, Y. Y., & Little, D. (1998). An empirical investigation of enterprise-wide integration of MRPII and JIT. International Journal of Operations & Production Management, 18(1), 66–86.
Zhong, R. Y., Xu, X., Klotz, E., & Newman, S. T. (2017). Intelligent manufacturing in the context of Industry 4.0: A review. Engineering, 3(5), 616–630.