簡易檢索 / 詳目顯示

研究生: 曾柏綸
Tseng, Po-Lun
論文名稱: 盛鋼桶預熱模型建立與純氧燃燒操作之效益評估
Development of a Ladle Preheating Model and the Performance Assessment of Oxy-Combustion Operation
指導教授: 吳明勳
Wu, Ming-Hsun
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 173
中文關鍵詞: 盛鋼桶純氧燃燒加熱爐節能熱傳模型
外文關鍵詞: ladle, oxy-combustion, heating furnace, energy saving
相關次數: 點閱:99下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究首先建立一套可預測盛鋼桶預熱之溫度變化之熱傳模型,並據以評估將純氧燃燒導入盛鋼桶加熱爐之節能效益。研究以一15噸小型盛鋼桶加熱爐為標的,先針對空氣燃燒與純氧燃燒進行穩態模擬,聯立求解質量守恆、物種傳輸、能量守恆及熱傳導方程,分析不同燃料流量條件下,對盛鋼桶內壁平均溫度的影響,研究加熱時間對盛鋼桶效率的影響。並探討滲入空氣對系統的影響,同時也透過三維反應流模型研究幾何上的改變對純氧燃燒加熱效果的影響。結果顯示,相較於空氣燃燒,使用純氧燃燒具有更好的加熱效果。在相同蓄熱量與內壁溫度條件下,純氧燃燒可使用較低的燃料流量與成本來達到相同的加熱效果。而空氣滲入會使得盛鋼桶預熱效果變低,但即使滲入的空氣比空氣燃燒多,使用純氧燃燒仍有機會比空氣燃燒節能,而透過盛鋼桶加熱爐的幾何改造,可以使得滲入空氣比低於空氣燃燒,說明將純氧燃燒技術應用於盛鋼桶加熱爐系統,不僅可節省燃料,計入純氧之額外成本後,整體成本仍較空氣燃燒低廉。

    The objective of our research was to assess the performance of oxy-combustion operation includes the influence of fuel flow rate, oxygen enhances, and air ingress. In this study, we take a 15-ton ladle furnace for the subject. Develop a one-dimensional model with chemical reaction and heat transfer. The result shows that compared with air-combustion, oxy-combustion get higher temperature of flue gas and ladle lining, shorter heating time, lower fuel supply, higher energy efficiency, and lower cost.

    目錄 摘要 i ABSTRACT ii SUMMARY ii INTRODUCTION iii MATERIALS AND METHODS iv RESULTS AND DISCUSSION iv CONCLUSION v 致謝 vi 目錄 vii 表目錄 xi 圖目錄 xii 符號說明 xvii 第1章 緒論 1 1-1 前言 1 1-2 文獻回顧 4 1-3 研究目的 9 1-4 本文架構 9 第2章 問題描述 11 2-1 盛鋼桶幾何與操作條件 11 2-1-1 中鋼空氣燃燒實測 12 2-2 COG燃燒特性 16 2-2-1 COG組成與熱物性 16 2-2-2 COG預混焰特性 18 2-3 盛鋼桶預熱因次分析 29 第3章 一維盛鋼桶預熱模型 34 3-1 一維盛鋼桶反應器模型 34 3-1-1 計算區間與邊界條件 34 3-1-2 統御方程式 35 3-1-3 流動控制次模型 36 3-1-4 熱傳導次模型 36 3-1-5 熱對流次模型 38 3-1-6 熱輻射次模型 40 3-1-7 求解方法 45 第4章 一維預熱模型模擬結果 49 4-1 無空氣滲入情況之結果 49 4-1-1 穩態時不同燃料質量流率下的影響 49 4-1-2 不同燃料質量流率下之盛鋼桶壁面升溫情況 52 4-1-3 盛鋼桶進行純氧燃燒之節能效益評估 56 4-2 有空氣滲入情況之結果 59 4-2-1 穩態時不同空氣滲入率下的影響 59 4-2-2 在有空氣滲入情況下之盛鋼桶壁面升溫情況 63 4-2-3 在有空氣滲入情況下,盛鋼桶進行純氧燃燒之節能效益評估 74 4-3 小結 75 第5章 三維反應流模型建立 81 5-1 計算區間與邊界條件 81 5-2 統御方程式 82 5-3 紊流次模型 84 5-4 燃燒次模型 85 5-5 熱輻射次模型 86 5-6 求解方法 87 5-7 網格獨立性測試 89 第6章 三維反應流模擬結果 90 6-1 空氣燃燒 90 6-2 純氧燃燒模擬 93 6-3 改造盛鋼桶進行純氧燃燒 96 6-4 小結 98 第7章 結論與未來展望 103 7-1 結論 103 7-2 未來展望 104 參考文獻 105 附錄 A Decouple model ource code 110 附錄 B Couple model source code 127

    [1] 饒榮水,鋼包烘烤技術的發展(2000),工業加熱,3期,第8-10頁,2000。
    [2] 李淑芬,鋼包烘烤裝置的發展,冶金能源,3期,第37-39頁,2003。
    [3] Linde North America, OXYGON® 400. Fast and fuel efficient oxy-fuel preheating of vessels up to 50 tons size.
    [4] 朱尚龙,眭向荣,郑暐,鋼包烘烤器富氧燃燒的應用研究,工業爐,29卷,4期,第21-23頁,2007。
    [5] 付延鋼,劉廣波,崔明愛,新型鋼包烘烤器專用燃燒器的概述,一重技術,4期,第33-34頁,2002。
    [6] 徐世武,刘思源,刘伟,新型鋼包烘烤器專用燃燒器的研製,冶金標準化與質量,40卷,3期,第22-23頁,2002。
    [7] 趙斌,馬杰,蓄熱式鋼包烘烤技術的應用,冶金能源,32卷,4期,第51-53頁,2013
    [8] 唐燕武,蓄熱式鋼包烘烤器的科學使用與改進,安徽冶金科技職業學院學報,18卷,4期,第23-25頁,2008。
    [9] 歐儉平,蕭澤強,蔣紹堅,劉建華,蓄熱式鋼包烘烤裝置的熱工特性,中南大學學報(自然科學版),35卷,2期,第217-221頁,2004。
    [10] 翟正耀,蓄熱式燃燒技術在鋼包烘烤器上的應用,能源研究與利用,2期,第41-42頁,2001。
    [11] 高靖超,蓄熱式鋼包烘烤器的開發與應用,煉鋼,23卷,5期,第41-44頁,2007。
    [12] 楊山玉,陽艷,混合煤氣成分變化對加熱爐內溫度場影響的數值模擬研究,工業加熱,37卷,5期,第27-30頁,2008。
    [13] C. E. Baukal Jr., C. E. Baukal Jr. (1998), "Oxygen-enhanced combustion 1st ed.", CRC Press, pp.21-34.
    [14] 毛艷麗,曲余玲,王涿,富氧燃燒技術及其在鋼鐵生產中的應用,上海金屬,34卷,6期,第52-56頁,2012。
    [15] Charles E. Baukal Jr., Charles E. Baukal Jr.(1998), Oxygen-enhanced combustion 1st ed., CRC Press, pp.21-34,.
    [16] 戴樹業,韓建國,李宏,富氧燃燒技術的應用,玻璃與搪瓷,2卷,2期,第26-29頁,2000。
    [17] 劉彥,張少華,徐江榮,富氧燃燒技術研究現狀及發展,能源工程,6期,第50-56頁2013。
    [18] 張富信,潘遠革,低熱值燃料在鋼包高溫快速烘烤工藝中的應用,工業爐,22卷,2期,第48-51頁,2000。
    [19] 胡明, 郭悅, 戴方欽,鋼包烘烤熱效率的計算,冶金能源,32卷,3期,第31-35頁,2013。
    [20] 劉竹昕,張衛軍,雙蓄熱式鋼包烘烤器的數值模擬及分析,冶金能源,33卷,2期,第27-30頁,2014。
    [21] P. Vesterberg, G. Moroz (2006), Flameless oxyfuel for highly visible results, AISTech 2006, Cleveland, Ohio, USA, May 1-4.
    [22] Linde North America, OXYGON® Maximising efficiency in ladle preheating.
    [23] V. Paschkis(1956), Temperature Drop in Pouring Ladles., Transactions of the American Fisheries Society, Vol. 64, pp. 565-576.
    [24] V. Paschkis and J. W. Hlinka(1957), Temperature Drop in Pouring Ladles Part Two., Transactions of the American Fisheries Society, Vol. 65, pp. 276-281.
    [25] R. Alberny and A. Leclercq(1973), Heat Losses from Liquid Steel in the Ladle and in the Tundish of a Continuous-casting Installation., In: Mathematical process models in iron and steelmaking, Proceedings, Amsterdam, pp. 151–156.
    [26] M. J. Chone and F. Teyssier(1973), Senkan la¨mpo¨ha¨vio¨iden laskeminen., Technical Report RE 137, IRSID, Maizie´res-le´s-Metz, Translated from French at Rautaruukki Oy, Finland.
    [27] M. A. Omotani, L. J. Heaslip, and A. Maclean(1983), Ladle Temperature Control During Continuous Casting., Iron and Steelmaker, pp. 29–35.
    [28] H. Pfeifer, F. N. Fett, H. Schafer, K. H. Heinen (1983), The Influence of Various Ladle Board Geometries on the Heat Loss of Liquid Steel., Stahl und Eisen, Vol. 103 (25-26), pp. 1321-1326.
    [29] H. Pfeifer, F. N. Fett, H. Schafer, and K. H. Heinen(1984), Modell zur thermischen Simulation von Stahlgiesspfannen., Stahl und Eisen, Vol. 104(24), pp. 1279-1287.
    [30] H. Pfeifer, F. N. Fett, H. Schafer, and K. H. Heinen(1985), Heating-up Model for Steel Casting Ladles., Stahl und Eisen, Vol. 105 pp. 759–764.
    [31] B. Mohanty and J. Satayaut(1992), Dynamic Model for Ladle Preheater Performance Evaluation., International Journal of Energy Research, Vol. 16(1), pp. 51-60.
    [32] J. D. Chen and P. H. Wang(1996), Development and Application of a Thermal Model for the Relined Ladle in China Steel Corporation., International Journal of Energy Research, Vol. 20(5), pp. 423-435.
    [33] I. Glassman and R. A. Yetter(2008), Combustion, 4th ed., Academic Press, London.
    [34] W. C. Reynolds(1986), “Stanjan,” Dept. Mech. Eng . Stanford University, Stanford, CA.
    [35] R. J. Kee, F. M. Rupley, and J. A. Miller(1989), CHEMKIN-II: “ A FORTRAN Chemical Kinetics Package for the Analysis of Gas-Phase Chemical Kinetics, ” Sandia National Laboratories, Livermore, CA, Sandia Report SAWD89-8009.
    [36] T. Poinsot and D. Veynante(2005), Theoretical and numerical combustion, RT Edwards, Inc.
    [37] E. Mallard, and H. L. Le Chatelier(1883), Ann. Mines 4 , 379.
    [38] N. N. Semenov(1951 ), NACA Tech. Memo. No. 1282.
    [39] Y. B. Zeldovich and D. A. Frank-Kamenetskii(1938), the theory of thermal flame propagation, Zhurnal Fizicheskoi Khimii. Vol.12(2).
    [40] D. Goodwin(2015), Cantera: An object-oriented software toolkit for chemical kinetics, thermodynamics, and transport processes, Caltech, Pasadena. [Online]. Available: http://code.google.com/p/cantera
    [41] R. J. Kee, J. F. Great, M. D. Smooke, and J. A. Miller(1985), A Fortran Program for Modeling Steady Laminar One-Dimensional Premixed Flames, Sandia Report , SAND85-8240.
    [42] T. A. Ameel (1997), Int. Comm. Heat Mass Transfer, 24, 112.
    [43] G. van Rossum(1995), Python tutorial, Technical Report CS-R9526, Centrum voor Wiskunde en Informatica (CWI), Amsterdam.
    [44] H. C. Hottel and A. F. Sarofim (1967), Radiative Transfer, McGraw-Hill.
    [45] F. P. Incropera, D. P. DeWitt, T. L. Bergman, and A. S. Lavine (2007), Fundamentals of Heat and Mass Transfer, 6th ed, New York, John Wiley & Sons Inc., pp. 414-577.
    [46] M. F. Modest(2003), Radiative Heat Transfer, Academic Press.
    [47] L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P Edwards, J. M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanasi(1998), The HITRAN molecular spectroscopic database and HAWKS (HITRAM atmospheric workstation): 1996 edition, Journal of Quantitative Spectroscopy and Radiative Transfer, vol. 60, pp. 665-710.
    [48] L. S. Rothman, C. Camy-Peyret, J. M. Flaud, R. R. Gamache, A. Goldman, D. Goorvitch, R, L. Hawkins, J. Schroeder, J. E. A. Selby, and R. B. Wattson(2000), HITEMP, the high-temperature molecular spectroscopic database, available through http://www.hitran.com.
    [49] Robert A. Rohde, Global Warming Art.
    [50] J. O. Arnold, E. E. Whiting, and G. C. Lyle(1969), Line by Line Calculation of Spectra from Diatomic Molecules and Atoms Assuming a Voigt Line Profile, Journal of Quantitative Spectroscopy and Radiative Transfer, Vol.9(6), pp. 775-798.
    [51] G. N. Plass(1958), Models for Spectral Band Absorption, Journal of the Optical Society of America Vol. 48(10), pp. 690-703.
    [52] T. F. Smith, Z. F. Shen, and J. N. Friedman(1982), Evaluation of Coefficients for the Weighted Sum of Gray Gases Model., J. Heat Transfer, Vol. 104(4), pp. 602-608.
    [53] M. F. Modest(1991), The Weighted-Sum-of-Gray-Gases Model for Arbitrary Solution Methods in Radiative Transfer., J. Heat Transfer, Vol. 113, pp. 650-656.
    [54] B. Leckner(1972), Spectral and Total Emissivity of Water Vapor and Carbon Dioxide, Combustion and Flame, Vol.19, pp.33-48.
    [55] ANSYS® Fluent 14.
    [56] O. Reynolds(1895), On the Dynamical Theory of Incompressible Viscous Fluids and the Determination of the Criterion., Philosophical Transactions of the Royal Society of London. A, v. 186, pp. 123-164., Available online from JSTOR
    [57] J. O. Hinze(1975), Turbulence, McGraw-Hill Publishing Co., New York.
    [58] B. E. Launder and D. B. Spalding(1972), Lectures in Mathematical Models of Turbulence. Academic Press, London, England.
    [59] D. B. Spalding(1970), Mixing and chemical reaction in steady confined turbulent flames. In 13th Symp.(Int’l.) on Combustion. The Combustion Institute.
    [60] B. F. Magnussen and B. H. Hjertager(1976), On mathematical models of turbulent combustion with special emphasis on soot formation and combustion., In 16th Symp. (Int’l.) on Combustion. The Combustion Institute.
    [61] S. Chandrasekhar(1960), Radiative Transfer, Dover Publications.
    [62] A. Coppalle and P. Vervisch(1983), The Total Emissivities of High-Temperature Flames, Vol. 49(1-3), pp. 101-108.
    [63] A. Burcat (1984), Thermochemical Data for Combustion Calculations, Chapter 8 of Combustion Chemistry, W.C. Gardiner, Ed, Springer-Verlag, New York.
    [64] A. Burcat and B. McBride (1993), 1994 Ideal Gas Thermodynamic Data for Combustion and Air- Pollution Use, Technion Report TAE 697.
    [65] B. J. McBride, S. Gordon and M. A. Reno (1993),Coefficients for Calculating Thermodynamic and Transport Properties of Individual Species, NASA Report TM-4513.
    [66] B. R. Rich (1953), An Investigation of Heat Transfer from an Inclined Flat Plate in Free Convection, Trans. ASME, 75, 893.
    [67] D. Enskog(1922), Archiv for Matematik, Astronomi, och Fysik, 16, 36.
    [68] G. C. Vliet (1969), Natural Convection Local Heat Transfer on Constant- Heat-Flux Inclined Surface, Trans. ASME, 91C, 511.
    [69] G. D. Morrow and R. O. Russell(1985), Thermal Modeling in Melt Shop Applications: Theory and Practice., Am Ceram Soc Bull, Vol. 64 (7), pp. 1007–1012.
    [70] G. P. Smith, D. M. Golden, M. Frenklach, N. W. Moriarty, Boris Eiteneer, Mikhail Goldenberg, C. Thomas Bowman, Ronald K. Hanson, Soonho Song, William C. Gardiner, Jr., Vitali V. Lissianski, and Zhiwei Qin http://www.me.berkeley.edu/gri_mech/.
    [71] H. Erkku(1959), Radiant Heat Exchange in Gas-Filled Slabs and Cylinders, Ph.D. thesis, Massachusetts Institute of Technology, Cambridge, MA.
    [72] H. Martin (1977), Heat and Mass Transfer between Impinging Gas Jets and Solid Surface, in J. P. Hartnett and T. F. Irvine, Jr., Eds., Advances in Heat Transfer, Vol.13, Academic Press, New York.
    [73] J. O. Hirschfelder, C. F. Curtis, and R. B. Bird(1954), Molecular Theory of Gases and Liquids, Wiley, New York.
    [74] J. R. Howell(1982), A Catalog of Radiation Configuration Factor, McGraw-Hill, New York.
    [75] L. F. A. Azeveo, and E. M. Sparrow (1985), Natural Convection in Open-Ended Inclined Channels, J. Heat Transfer, 107, 893.
    [76] Lindemann(1922). Trans. Faraday Soc., 17:598.
    [77] R. G. Gilbert, K. Luther, and J. Troe(1983), Ber. Bunsenges, Phys. Chem., 87:169.
    [78] R. J. Kee, F. M. Rupley, J. A. Miller, M. E. Coltrin, J. F. Grcar, E. Meeks, H. K. Moffat, A. E. Lutz, G. Dixon-Lewis, M. D. Smooke, J. Warnatz, G. H. Evans, R. S. Larson, R. E. Mitchell, L. R. Petzold, W. C. Reynolds, M. Caracotsios, W. E. Stewart, P. Glarborg, C. Wang, and O. Adigun (2000), CHEMKIN Collection, Release 3.6, Reaction Design, Inc., San Diego, CA.
    [79] R. J. Kee, M. E. Coltrin, and P. Glarborg(2003), Chemically Reacting Flow, Wiley, New York.
    [80] R.A. Svehla(1962), Estimated Viscosities and Thermal Conductivities of Gases at High Temperatures, Technical Report Technical Report R-132, NASA.
    [81] S. V. Patankar(1980), Numerical Heat Transfer and Fluid Flow, Hemisphere Publishing Corporation, Washington – New York – London. McGraw Hill Book Company, New York.
    [82] T. Fuii, and H. Imura (1972), Natural Convection Heat Transfer from a Plate with Arbitrary Inclination, Int. J. Heat Mass Transfer, 15, 755.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE