簡易檢索 / 詳目顯示

研究生: 楊璧榮
Yang, Pi-Jung
論文名稱: 應用於新興無線通訊系統之射頻前端電路研製
Design of Radio Frequency Front-end Circuits for Novel Wireless Communication Systems
指導教授: 曾永華
Tzeng, Yon-Hua
蘇炎坤
Su, Yan-Kuin
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 93
中文關鍵詞: 全球微波存取互通性超寬頻低雜訊放大器混頻器無線通訊
外文關鍵詞: WiMAX, UWB, lna, mixer, Wireless communication system
相關次數: 點閱:104下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 射頻接收器前端電路中,包含了低雜訊放大器與混頻器。低雜訊放大器為接收器的第一級,用以接收訊號,加以放大並減少雜訊值,增加訊號傳輸的正確性;混頻器為第二級,接收經由低雜訊放大器放大之訊號,與本地振盪器產生之本地訊號加以混頻,產生中頻訊號輸出至後段電路中。

    在本篇論文中記載數個射頻前端電路之設計,包含以下電路:3.1~10.6 GHz超寬頻折疊式混頻器、3.5 GHz WiMAX 主動式Balun 折疊式混頻器、3.5 GHz WiMAX 低雜訊放大器。

    3.1~10.6 GHz超寬頻折疊式混頻器,利用並聯之LC與RLC來構成超寬頻之輸入匹配電路,達成UWB之頻寬要求與良好之轉換增益平坦度。在3~10 GHz的S11低於-10dB,轉換增益為1.7~6.6dB,P1dB與IIP3為-18dBm與-2dBm,消耗功率為10.4mW。

    3.5 GHz WiMAX 主動式Balun 折疊式混頻器,應用於全球微波存取互通性通訊系統,延續上述電路主體架構,利用內建之主動式Balun將單端輸入訊號轉為混頻器所需之差動輸入訊號。針對WiMAX 3.5 GHz頻帶完成整體混頻器設計。轉換增益為6.2dB,P1dB與IIP3為-14dBm與-7dBm,消耗功率為16.8mW。

    3.5 GHz WiMAX 低雜訊放大器,應用於全球微波存取互通性通訊系統,利用forward body bias方式,設計出一運作於低電壓,低消耗功率之低雜訊放大器。增益為17.6dB,P1dB與IIP3為-15dBm與-6dBm,Noise Figure為2.5dB,消耗功率為8.6mW。

    本論文中之電路設計是以TSMC 0.18 μm CMOS製程之model進行模擬,並透過CIC之申請下線,完成晶片之製作。

    Low noise amplifier is the first stage of the receiver. It can amplify the received signal and reduce the noise of whole system in order to improve the accuracy of transmission. Mixer is the second stage of the receiver. It will mix the signal amplified by low noise amplifier with local signal induced by voltage control oscillator and induce intermediate-frequency signal to later stages.

    In this thesis, we designed some radio frequency front-end circuits, contain 3.1~10.6 GHz folded-cascode mixer, 3.5 GHz folded-cascode mixer with active balun, and 3.5 GHz low noise amplifier.

    3.1~10.6 GHz folded-cascode mixer uses a parallel circuit of LC and RLC circuits to achieve wide bandwidth of UWB system and flat conversion gain performance. S11 at 3 to 10 GHz is lower than -10 dB, conversion gain is 1.7 to 6.6 dB, P1dB is -16 dBm, IIP3 is -2 dBm, and power consumption is 10.6 mW.

    3.5 GHz folded-cascode mixer inherits the architecture of 3.1~10.6 GHz folded-cascode mixer. It uses a designed active balun to convert single-end input signal into differential signals. This circuit is designed aim at 3.5 GHz for WiMAX. Conversion gain is 6.2 dB, P1dB is -14 dBm, IIP3 is -7 dBm, and power consumption is 16.8 mW.

    3.5 GHz low noise amplifier uses forward body bias technique to enhance the performance of this chip with low supply voltage. This circuit is designed aim at 3.5 GHz for WiMAX, too. Gain is 17.6 dB, P1dB is -15 dBm, IIP3 is -6 dBm, noise figure is 2.5 dB, and power consumption is 8.6 mW.

    The circuits are implemented by TSMC 0.18μm CMOS process. These chips have also been fabricated by the support of CIC in Taiwan.

    Table of Contents Abstract (in Chinese) I Abstract (in English) II Acknowledgement III Contents IV List of Tables VI List of Figures VII Chapter 1 INTRODUCTION 1 1.1 Motivation 1 1.2 Wireless Transceiver Architecture 3 1.3 Thesis Organization 4 Chapter 2 WIRELESS COMMUNICATION SYSTEMS 5 2.1 MB-OFDM Ultra Wide Band (UWB) 5 2.1.1 What is UWB 5 2.1.2 UWB System Specification 8 2.2 Worldwide Interoperability for Microwave Access (WiMAX) 10 2.2.1 What is WiMAX 10 2.2.2 IEEE 802.16 11 Chapter 3 THEORIES OF DESIGNING RADIO FREQUENCY FRONT-END CIRCUITS 14 3.1 Scattering Parameters 14 3.2 Stability Considerations 16 3.3 Noise Analysis 18 3.3.1 Thermal Noise of Resistor 18 3.3.2 Thermal Noise of MOSFET 19 3.3.3 Gate Noise 21 3.3.4 Flicker Noise 22 3.3.5 Flicker Noise Corner Frequency of MOSFET 23 3.3.6 Noise Figure 23 3.4 Nonlinear Characteristics 27 3.4.1 Harmonic Distortion 27 3.4.2 Gain Compression 28 3.4.3 Inter-modulation Distortion 29 3.5 Conversion Gain 31 3.6 Isolation Consideration 32 Chapter 4 DESIGN OF DOWN-CONVERSION MIXERS 33 4.1 Principle of Mixers 33 4.2 Balanced Mixers 34 4.2.1 Single-balanced Mixer 35 4.2.2 Double-balanced Mixer 36 4.3 A Full-Band, Flat Voltage Gain UWB Folded-cascode Mixer 38 4.3.1 Design of Matching Networks 38 4.3.2 Designs of Core Circuit and Output Buffers 40 4.3.3 Measurement Considerations 41 4.3.4 Measurement and Simulation Results 49 4.3.5 Layout and Microphotograph of Chip 54 4.3.6 Summary 56 4.4 A 3.5 GHz Folded-cascode Mixer with Active Balun 57 4.4.1 Design of Active Balun 57 4.4.2 Designs of Core Circuit and Output buffers 61 4.4.3 Simulation Results 63 4.4.4 Layout of Chip 68 4.4.5 Measurement Consideration 69 4.4.6 Summary 71 Chapter 5 DESIGN OF LOW NOISE AMPLIFIER 72 5.1 Principle of Amplifier 72 5.1.1 Common-source Amplifier 7 2 5.1.2 Common-gate Amplifier 75 5.2 A Low-voltage, Low Noise Amplifier 7 9 5.2.1 Designs of Circuit 7 9 5.2.2 Simulation Results 8 2 5.2.3 Layout of Chip 86 5.2.4 Measurement Consideration 87 5.2.5 Summary 89 Chapter 6 CONCLUSION AND FUTURE WORK 90 6.1 Conclusion 90 6.2 Future Work 91 References

    [1] IEEE 802.15 WPAN High Rate Alternative PHY Task Group 3a (TG3a) http://www.ieee802.org/15/pub/TG3a.html
    [2] Wikimedia Ultra-wideband http://en.wikipedia.org/wiki/Ultra-wideband
    [3] Razavi, B.; Aytur, T.; Lam, C.; Fei-Ran Yang; Kuang-Yu Li; Ran-Hong Yan; Han-Chang Kang; Cheng-Chung Hsu; Chao-Cheng Lee, “A UWB CMOS transceiver”, Solid-State Circuits, IEEE Journal of Volume 40, Issue 12, Dec. 2005
    [4] Wimax Forum http://www.wimaxforum.org/home/
    [5] IEEE 802.16 Published Standards and Drafts http://grouper.ieee.org/groups/802/16/published.html
    [6] Wikimedia IEEE 802.16 http://en.wikipedia.org/wiki/IEEE_802.16
    [7] Farahani, B.J.; Ismail, M., “WiMAX/WLAN radio receiver architecture for convergence in WMANS”, Circuits and Systems, 2005. 48th Midwest Symposium, Page(s):1621 – 1624, Aug. 2005
    [8] Behzad Razavi, “Design of Analog CMOS Integrated Circuits”, the McGraw-Hill Companies, Boston, 2001
    [9] Maas, Stephen A. “Microwave mixers”, Artech House, Boston, 1993
    [10] B. Gilbert, “A Precise Four-Quadrant Multiplier with Sub-nanosecond Response”, IEEE J. Solid State Circuits Vol. SC3, No.4, Dec. 1968
    [11] Motieifar, A.; Pour, Z.A.; Bridges, G.; Shafai, C.; Shafai, L., “An Ultra Wideband (UWB) Mixer with 0.18UM RF CMOS Technology”, Electrical and Computer Engineering, 2006. CCECE' 06. Canadian Conference, Page(s):697 – 700, May 2006
    [12] De-Mao Chen, Zhi-Ming Lin, “A Fully Integrated 3 to 5 GHz CMOS Mixer with Active Balun for UWB Receiver” Circuits and Systems, 2006. APCCAS 2006. IEEE Asia Pacific Conference, Page(s):370 – 373, Dec. 2006
    [13] Ta-Tao Hsu; Chien-Nan Kuo, “Low voltage 2-mW 6~10.6-GHz ultra-wideband CMOS mixer with active balun,” Circuits and Systems, 2006. ISCAS 2006. Proceedings. 2006 IEEE International Symposium, May 2006
    [14] Ho Suk Kang; Sang Geun Lee; Chul Soon Park, “A Low LO Power Mixer Utilizing the Body Effect”, Microwave and Wireless Components Letters, IEEE Volume 17, Issue 11, Page(s):799 - 801, Nov. 2007
    [15] Dake Wu; Ru Huang; Waisum Wong; Yangyuan Wang, “A 0.4-V Low Noise Amplifier Using Forward Body Bias Technology for 5 GHz Application”, Microwave and Wireless Components Letters, IEEE Volume 17, Issue 7, Page(s):543 - 545, July 2007

    下載圖示 校內:2011-07-09公開
    校外:2011-07-09公開
    QR CODE