簡易檢索 / 詳目顯示

研究生: 陳曉葳
Chen, Hsiao-wei
論文名稱: 氮化銦奈米線之成長與性質
The growth and characterization of Indium nitride nanowires
指導教授: 洪昭南
Hong, Chau-Nan
學位類別: 碩士
Master
系所名稱: 工學院 - 奈米科技暨微系統工程研究所
Institute of Nanotechnology and Microsystems Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 137
中文關鍵詞: 氮化銦奈米線
外文關鍵詞: Indium nitride, nanowire, InN
相關次數: 點閱:64下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來氮化物半導體因為能隙值涵蓋整個可見光範圍(0.7eV~6.2eV),可應用於光電元件而受到高度關注。其中氮化銦又具有最高的電子遷移率與飽和漂移速度,因此更適合應用於如場效應電晶體等高頻高速元件方面。
    本實驗之目標為開發一新式電漿輔助管型高溫爐系統,並將其應用於一維氮化銦奈米結構之製備。反應器設計主要有三種型式,並遵循VLS機制成長高品質之氮化銦奈米線。XRD分析所成長之氮化銦奈米線為纖鋅礦結構。TEM顯示奈米線沿著[100]與[002] 方向成長,且為完美單晶結構。Raman光譜與ESCA元素分析結果證明所成長的是氮化銦奈米線。當基板溫度設定從530℃變為580℃時,氮化銦的結構由奈米線轉變為上尖下寬三角形片狀奈米帶。
    以混流形式成長系統合成氮化銦奈米線之實驗中,當氫氣/氮氣/氬氣流量比為5/95/100、基板溫度500℃、壓力500 mtorr、電漿功率設定30W時,可以得到型態最為良好之奈米線。

    III-nitride semiconductors were attracted much attention in recent years because of the wide bandgap (0.7~6.2 eV) as promising materials for optoelectronics such as light emitting diodes and solar cells. Indium nitride (InN) has the lower effective electron mass than other III-nitrides leads to higher mobility and saturation velocity at room temperature, which makes it a good candidate for high frequency and high speed electronic device applications. But high quality InN is very difficult to synthesize because of the extremely low decomposition temperature and high equilibrium vapor pressure of nitrogen.
    High quality InN nanowires were grown by a homemade plasma-assisted chemical vapor deposition reactor, which contain a plasma generator and a quartz tube furnace. There are three different types of reactor designs for this study. The growth follows the VLS mechanism by using gold as the catalyst. The X-ray diffraction pattern can be indexed to InN with a hexagonal structure. TEM investigation reveals that InN nanowires grew along the [100] and [002] direction without obvious defects. Raman and ESCA spectrum both indicated that the InN nanowires were successfully synthesized. The structure of InN became nanobelts in tapered tips at 580℃.
    The optimized synthesis condition for this study suggests that the gas flow rate H2/N2/Ar is 5/95/100 sccm, the growth pressure is 500 mtorr, the substrate temperature is 500℃, and the power of plasma supplied is 30 W in the mixing flow growth system.

    中文摘要.................................................Ⅰ 英文摘要.................................................Ⅱ 致謝.....................................................Ⅲ 目錄.....................................................V 表目錄..................................................XI 圖目錄..................................................XII 第一章 序論...............................................1 1-1 前言..................................................1 1-2 奈米科技發展現況......................................2 1-2-1 奈米材料與元件......................................2 1-2-2 奈米元件製作瓶頸....................................4 1-2-3 全球奈米科技研發趨勢與市場潛力......................5 1-3 研究動機..............................................7 第二章 理論基礎與文獻回顧................................15 2-1 一維奈米結構的成長...................................15 2-1-1 氣-液-固(VLS)機制..................................16 2-1-2 氧化物促進成長法(Oxide assisted growth)............18 2-1-3 氣-固(VS)機制......................................19 2-2 氮化銦的結構與特性...................................19 2-3 氮化銦奈米線的成長...................................22 2-3-1 氣-液-固機制成長氮化銦奈米線.......................22 2-3-2 氣-固機制成長氮化銦奈米線..........................23 2-4 奈米線的組裝.........................................23 2-4-1 間接組裝...........................................24 2-4-2 直接組裝...........................................25 2-5 奈米線元件...........................................25 2-5-1 奈米線電晶體.......................................26 2-5-2 奈米線發光二極體...................................26 2-5-3 奈米線太陽能電池...................................27 2-5-4 奈米線場發射元件...................................27 2-5-5 奈米線感測器.......................................27 2-6 電漿理論.............................................28 2-6-1 電漿定義與特性.....................................28 2-6-2 電介質放電 (Dielectric barrier discharge,DBD)......33 第三章 實驗方法與步驟....................................54 3-1 實驗流程.............................................54 3-2 儀器設備.............................................55 3-2-1 電漿輔助管型高溫爐系統設計.........................55 3-2-2 管型高溫爐系統.....................................56 3-2-3 電漿電源供應器.....................................56 3-2-4 真空系統...........................................56 3-2-5 壓力監控系統.......................................57 3-2-6 流量控制系統.......................................57 3-3 實驗材料.............................................58 3-3-1 基板材料...........................................58 3-3-2 金屬材料...........................................58 3-3-3 基板清洗溶劑.......................................58 3-3-4 實驗氣體...........................................59 3-4 實驗步驟.............................................60 3-4-1 基板前處理.........................................60 3-4-2 成長步驟...........................................60 3-5 實驗鑑定.............................................61 3-5-1 掃描式電子顯微鏡...................................61 3-5-2 穿透式電子顯微鏡...................................62 3-5-3 X光繞射分析儀......................................63 3-5-4 微拉曼光譜儀.......................................63 3-5-5 化學分析能譜儀.....................................64 第四章 結果與討論........................................72 4-1 前言.................................................72 4-2 雙流(Two streams)形式之成長系統......................73 4-2-1 前言...............................................73 4-2-2 表面型態分析.......................................73 4-2-3 晶體結構分析.......................................74 4-2-4 穿透式電子顯微鏡分析...............................75 4-2-5 微拉曼光譜分析.....................................76 4-2-6 化學成分分析.......................................77 4-3 氮化銦奈米帶之成長...................................88 4-3-1 前言...............................................88 4-3-2 表面型態分析.......................................88 4-3-3 晶體結構分析.......................................89 4-3-4 穿透式電子顯微鏡分析...............................89 4-3-5 成長機制探討.......................................90 4-4 混流(Mixing Flow)形式之成長系統......................98 4-4-1 前言...............................................98 4-4-2 氣體組成效應......................................100 4-4-2-1 前言............................................100 4-4-2-2 表面型態分析....................................100 4-4-2-3 晶體結構分析....................................102 4-4-2-4 穿透式電子顯微鏡分析............................102 4-4-2-5 拉曼光譜分析....................................103 4-4-2-6 化學成分分析....................................104 4-4-3 成長壓力效應......................................116 4-4-3-1 前言............................................116 4-4-3-2 表面型態分析....................................116 4-4-4 基板溫度效應......................................121 4-4-4-1 前言............................................121 4-4-4-2 表面型態分析....................................121 4-4-4-3 穿透式電子顯微鏡分析............................122 4-4-5 電漿功率效應......................................127 4-4-5-1 前言............................................127 4-4-5-2 表面型態分析....................................127 第五章 結 論............................................130 第六章 參考文獻.........................................131 自述....................................................137

    [1] D. M. Eigler, and E. K. Schweizer, Nature, 344, 524 (1990).
    [2] M. F. Crommie, C. P. Lutz, and D. M. Eigler, Science, 262, 218 (1993).
    [3] S. Iijima, Nature, 354, 56 (1991).
    [4] G. Pirio et al., Nanotechnology, 13, 1 (2002).
    [5] C. V. Nguyen, C. So, R. M. Stevens, Y. Li, L. Delziet, P. Sarrazin, and M. Meyyappan, J. Phys. Chem. B, 108, 2816 (2004).
    [6] Y. Cui, Z. Zhong, D. Wang, W. U. Wang, and C. M. Lieber, Nano Lett. 3, 149 (2003).
    [7] F. Qian, S. Gradecak, Y. Li, C. Y. Wen, and C. M. Lieber, Nano Lett. 5, 2287 (2005).
    [8] P. Yang, H. Yan, S. Mao, R. Russo, J. Johnson, R. Saykally, N. Morris, J. Pham, R. He, and H. J. Choi, Adv. Funct. Mater. 12,323 (2002).
    [9] M. Law, H. Kind, F. Kim ,B. Messer, and P. Yang, Angew. Chem. Int. Ed. 41, 2405 (2002).
    [10] Y. Cui, Q. Wei, H. Park, and C. M. Lieber, Science, 293, 1289(2001).
    [11] S. Y. Chou, P. R. Krauss, and P. J. Renstrom, Appl. Phys. Lett. 67, 21 (1995).
    [12] Taiwan Business Alliance http://member.taitra.org.tw/theme02_c/c_t02_01_16.htm
    [13] KMI Research, Nanotechnology: Impact of Nanoelectronics on the U.S. Electronics Industry
    [14] Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayer, B. Gates, Y. Ying, F. Kim, and H. Yan, Adv. Mater. 15, 353 (2003).
    [15] R. S. Wanger, and W. C. Ellis, Appl.Phys. Lett. 4, 89 (1964).
    [16] X. F. Duan, and C. M. Lieber, Adv. Mater. 12, 298 (2000).
    [17] X. F. Duan, and C. M. Lieber, J. Am. Chem. Soc. 122, 188 (2000).
    [18] Y. Wu, and P. Yang, J. Am. Chem. Soc. 123, 3165 (2001).
    [19] M. Yazawa, M. Koguchi, A. Muto, M. Ozawa, and K. Hiruma, Appl. Phys. Lett. 61, 2051 (1992).
    [20] A. M. Morales, and C. M. Lieber, Science, 279, 208 (1998).
    [21] M. H. Huang, Y. Wu, H. Feick, N. Tran, Eicke Weber, and P. Yang, Adv. Mater. 13, 113 (2001).
    [22] Y. C. Choi, W. S. Kim, Y. S. Park, S. M. Lee, D. J. Bae, Y. H. Lee, G. S. Park, W. B. Choi, N. S. Lee, and J. M. Kim, Adv. Mater. 12, 746 (2000).
    [23] J. Hu, M. Ouyang, P. Yang, and C. M. Lieber, Nature, 399, 48 (1999).
    [24] H. Omi , and T. Ogino, Appl. Phys. Lett. 71, 2163 (1997).
    [25] A. B. Greytak, L. J. Lauhon, M. S. Gudiksen, and C. M. Lieber, Appl. Phys. Lett. 84, 4176 (2004).
    [26] S. H. Yun, A. Dibos, J. Z. Wu, and D. K. Kim, Appl. Phys. Lett. 84, 2892 (2004).
    [27] D. Wang, J. G. Lu, C. J. Otten, and W. E. Buhro, Appl. Phys. Lett. 83, 5280 (2003).
    [28] C. C. Chen, C.C. Yeh, C. H. Chen, M. Y. Yu, H. L. Liu, J. J. Wu, K. H. Chen, L. C. Chen, J. Y. Peng, and Y. F. Chen, J .Am. Chem. Soc. 123, 2791 (2001).
    [29] Y. C. Zhu, Y. Bando, D. F. Xue, and D. Golberg, Adv. Mater. 16, 631 (2004).
    [30] Q. Li, X. Gong, C. Wang, J. Wang, K. Ip, and S. Hark, Adv. Mater. 16, 1436 (2004).
    [31] C. Ye, G. Meng, Y. Wang, Z. Jiang, and L. Zhang, J. Phys. Chem. B 106, 10338 (2002).
    [32] K. W. Chang , and J. J. Wu, J. Phys. Chem. B, 106, 7796 (2002).
    [33] R. Hupta, Q. Xiong, G. D. Mahan, and P. C. Eklund, Nano. Lett. 3, 1745 (2003).
    [34] E. P. A. M. Bakkers, and M. A. Verheijen, J. Am. Chem. Soc. 125, 3440 (2003).
    [35] M. S. Gudisksen, J. Wang, and C. M. Lieber, J. Phys. Chem. B, 106, 4036 (2002).
    [36] C. H. Liang, L. C. Chen, J. S. Hwang, K. H. Chen, Y. T. Hung, and Y. F. Chen, Appl. Phys. Lett. 81, 22 (2002).
    [37] S. C. Lyu, Y. Zhnag, C. J. Lee, H. Ruh, and H. J. Lee, Chem. Mater. 15, 3294 (2003).
    [38] P. Gao, and Z. L. Wang, J. Phys. Chem. B, 106, 12653 (2002).
    [39] C. Tang, Y. Bando, and T. Sato, J. Phys. Chem. B, 106, 7449 (2002).
    [40] J. W. Hu, Q. Li, X. M. Meng, C. S. Lee, and S. T. Lee, J. Phys. Chem. B, 106, 9526 (2002).
    [41] K. W. Chang, and J. J. Wu, J. Phys. Chem. B, 108 , 1838 (2004).
    [42] R. Q. Zhang, T. S. Chu, H. F. Cheung, N. Wang, and S. T. Lee, Mater. Sci. Eng. C. 16, 31 (2001).
    [43] S. T. Lee, N. Wang, and C. S. Lee, Mater. Sci. Eng. A. 286, 16 (2000).
    [44] H. J. Fan, R. Scholz, F. M. Kolb, and M. Zacharias, Appl. Phys. Lett. 85, 4142 (2004).
    [45] J. G. Lozano, F. M. Morales, R. Garcia, D. Gonzalez, V. Lebedev, C. Y. Wang, V. Cimalla, and O. Ambacher, Appl. Phys. Lett, 90, 091901 (2007).
    [46] Z. G. Qian, W. Z. Shen, H. Ogawa, and Q. X. Guo, J. Phys.: Condens. Matter, 16, R381 (2004).
    [47] S. Nakamura, Y. Harada, and M. Seno, Appl. Phys. Lett. 58, 2021 (1991).
    [48] S. Strite, and H. Morkoc, J. Vac. Sci. Technol. 10, 1237 (1992)
    [49] S. N. Mohammad, and H. Morkoc, Prog. Quant. Electron. 20, 361 (1996).
    [50] V. W. L. Chin, T. L. Tansely, and T. Osotchan, J. Appl. Phys. 75, 7365 (1994).
    [51] B. E. Foutz, S. K. O’Leary, M. S. Shur, and L. F. Eastman, J. Appl. Phys. 85, 7727 (1999).
    [52] R. Ascazubi, I. Wilke, K. Denniston, H. Lu, and W. J. Schaff, Appl. Phys. Lett. 84, 4810 (2004).
    [53] S. K. Pugh, D. J. Dugdale, S. Brand, and R. A. Abram, Semicond. Sci. Technol. 14, 23 (1999).
    [54] M. Yoshimoto, H. Yamamoto, W. Huang, H. Harima, J. Saraie, A. Chayahara, and Y. Horino, Appl. Phys. Lett. 83, 3480 (2003).
    [55] A. G. Bhuiyan, K. Sugita, K. Kasashima, A. Hashimoto, A. Yamamoto, and V. Yu. Davydov, Appl. Phys. Lett. 83, 4788 (2003).
    [56] J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager III, E. E. Haller, H. Lu, W.J. Schaff, Y. Saito, and Y. Nanishi, Appl. Phys. Lett. 80, 3967 (2002).
    [57] H. Lu, W. J. Schaff, J. Hwang, H. Wu, G. Koley, and L. F. Eastman, Appl. Phys. Lett. 79, 1489 (2001).
    [58] T. Matsuoka, H. Okamoto, M. Nakao, H. Harima, and E. Kurimoto, Appl. Phys. Lett. 81, 1246 (2002).
    [59] Y. Huang, H. Wang, Q. Sun, J. Chen, D. Y. Li, Y. T. Wang, and H. Yang, J. Cryst. Growth. 276, 13 (2005).
    [60] S. Gwo, C. L. Wu, C. H. Shen, H. W. Lin, H. Y. Chen, and H. Ahn, Proc. of SPIE, 6134, 61340L-1 (2006).
    [61] A. G. Bhuiyan, T. Tanaka, K. Kasashima, A. Hashimoto, and A. Yamaoto, Jpn. J. Appl. Phys. 42, 7284 (2003).
    [62] J. Aderhold, V. Y. Davydov, F. Fedler, D. Mistele, H. Klausing, T. Rotter, O. Semchinova, J. Stemmer, and J. Graul, Proc. of SPIE, 4086, 82 (2000).
    [63] J. Grandal, M. A. Sanchez-Garcı’ a, F. Calle, and E. Calleja, Phys. Status Solidi (c), 2, 2289 (2005).
    [64] A. G. Bhuiyan, A. Hashimoto, and A. Yamamoto, J. Appl. Phys. 94, 2779 (2003).
    [65] J. Goldberger, R. He, Y. Zhang, S. Lee, H. Yan, H. Choi, and P. Yang, Nature, 422, 599 (2003).
    [66] Z. L. Wang, Materials Today, 7, 26 (2004).
    [67] C. H. Shen, H. Y. Chen, H. W. Lin, S. Gwo, A. A. Klochikhin, and V. Yu. Davydov, Appl. Phys. Lett. 88, 253104 (2006).
    [68] T. Stoica, R. Meijers, R. Calarco, T. Richter, and H. Luth, J. Cryst. Growth. 290, 241 (2006).
    [69] M. S. Hu, G. M. Hsu, K. H. Chen, C. J. Yu, H. C. Hsu, L. C. Chen, J. S. Hwang, L. S. Hong, and Y. F. Chen, Appl. Phys. Lett. 90, 123109 (2007).
    [70] H. Y. Xu, Z. Liu, X. T. Zhang, and S. K. Hark, Appl. Phys. Lett. 90, 113105 (2007).
    [71] S. C. Shi, C. F. Chen, G. M. Hsu, J. S. Hwang, S. Chattopadhyay, Z. H. Lan, K. H. Chen, and L. C. Chen, Appl. Phys. Lett. 87, 203103 (2005).
    [72] S. Vaddiraju, A. Mohite, A. Chin, M. Meyyappan, G. Sumanasekera, B. W. Alphenaar, and M. K. Sunkara, Nano Lett. 5, 1625 (2005).
    [73] Y. J. Bai, Z. G. Liu, X. G. Xu, D. L. Cui, X. P. Hao, X. Feng, and Q. L. Wang, J. Cryst. Growth. 241, 189 (2002).
    [74] S. D. Dingman, N. P. Rath, P. D. Markowitz, P. C. Gibbons, and W. E. Buhro, Angew. Chem. Int. Ed. 39, 1470 (2000).
    [75] E. A. Brandes, ”Smithells Metals Reference Book”, Chapter 8, 9, 11, Butterworths (1983).
    [76] C. K. Chao, J. I. Chyi, C. N. Hsiao, C. C. Kei, S. Y. Kuo, H. S. Chang, and T. M. Hsu, Appl. Phys. Lett. 88, 233111 (2006).
    [77] H. J. Park, O. Kryliouk, T. Anderson, D. Khokhlov, and T. Burbaev, Physica E, 37, 142 (2007).
    [78] K. Yamamoto, S. Akita, and Y. Nakayama, J. Phys. D: Appl. Phys. 31, L34 (1998).
    [79] Y. Huang, X. Duan, Q. Wei , and C. M. Lieber, Science 291, 630 (2001).
    [80] D. Whang, S. Jin, Y. Wu, and C. M. Lieber, Nano Lett., 3, 1255 (2003).
    [81] G. Yu, A. Cao, and C. M. Lieber, Nature nanotechnology, 2, 372 (2007).
    [82] A. Ural, Y. Li, and H. Dai, Appl. Phys. Lett. 81, 3463 (2002).
    [83] M. Islam, S. Sharma, T. I. Kamins , and R. S. Williams, Appl. Phys. A , 80, 1133 (2005).
    [84] J. Xiang, W. Lu, Y. Hu, Y. Wu, H. Yan, and C. M. Lieber, Nature, 441, 489 (2006).
    [85] Y. Li, F. Qian, J. Xiang, and C. M. Lieber, Materials Today, 9, 18 (2006).
    [86] A. Kikuchi, M. Tada, K. Miwa, and K. Kishino, Proc. of SPIE, 6129 612905-1 (2006).
    [87] R. Könenkamp, R. C. Word, and C. Schlegel, Appl. Phys. Lett. 85, 6004 (2004).
    [88] L. Gangloff, E. Minoux, K. B. K. Teo, P. Vincent, V. T. Semet, V. T. Binh, M. H. Yang, I. Y. Y. Bu, R. G. Lacerda, G. Pirio, J. P. Schnell, D. Pribat, D. G. Hasko, G. A. J. Amaratunga, W. I. Milne, and P. Legagneux, Nano Lett. 4, 1576 (2004).
    [89] D. Zhang, Z. Liu, and C. Zhou, Mater. Res. Soc. Symp. Proc. 828, A271 (2005).
    [90] J. R. Roth, "Industrial plasma engineering-Volume 1: Principles Institute of Physics", Publishing in London, (1995).
    [91] B. Chapman, “Glow discharge processes (John Wiley & Sons)”, 119 (1980).
    [92] V. Y. Davydov, A. A. Klochikhin, V. V. Emtsev, D. A. Kurdyukov, S. V.Ivanov, V. A. Vekshin, F. Bechstedt, J. Furthmuller, J. Aderhold, J. Graul,A. V. Mudryi, H. Harima, A. Hashimoto, A. Yamamoto, and E. Haller, Phys. Status Solidi B, 234, 787 (2002).
    [93] E. Dimakis, E. Iliopoulos, K. Tsagaraki, A. Adikimenakis, and A. Georgakilas, Appl. Phys. Lett. 88, 191918 (2006).
    [94] M. F. Wu, S. Q. Zhou, A. Vantomme, Y. Huang, H. Wang, and H. Yang, J. Vac. Sci. Technol. A, 24, 275 (2006).
    [95] V. Yu. Davydov, V. V. Emtsev, I. N. Goncharuk, A. N. Smirnov, V. D. Petrikov, V. V. Mamutin, V. A. Vekshin, S. V. Ivanov, M. B. Smirnov, and T. Inushima, Appl. Phys. Lett. 75, 3297 (1999).
    [96] J. S. Dyck, K. Kim, S. Limpijumnong, W. R. L. Lambrecht, K. Kash, and J. C. Angus, Solid state Commun. 114, 355 (2000).
    [97] H. Richter, Z. P. Wang, and L. Ley, Solid Satae Commun. 39, 625 (1981).
    [98] I. H. Campbell, and P. M. Fauchet, Solid State Commun. 58, 739 (1986).
    [99] H. Parala, A. Devi, F. Hipler, E. Maile, A. Birkner, H. W. Becker, and R. A. Fischer, J. Cryst. Growth. 231, 68 (2001).
    [100] J. Zhang, L. Zhang, X. S. Penga, and X. F. Wang, J. Mater. Chem. 12, 802 (2002).
    [101] S. Luo, W. Zhou, Z. Zhang, X. Dou, L. Liu, X. Zhao, D. Liu, L. Song, Y. Xiang, J. Zhou, and S. Xie, Chem. Phys. Lett. 411, 361 (2005).
    [102] M. S. Hu, W. M. Wang, T. T. Chen, L. S. Hong, C. W. Chen, C. C. Chen, Y. F. Chen, K. H. Chen, and L. C. Chen, Adv. Funct. Mater. 16, 537 (2006).
    [103] Y. Hao, G. Meng, Z. L. Wang, C. Ye, and L. Zhang, Nano Lett. 6, 1650 (2006).
    [104] S. Biswas, S. Kar, T. Ghoshal, V. D. Ashok, S. Chakrabarti, and S. Chaudhuri, Materials Research Bulletin 42, 428 (2007).
    [105] Y. Dong, R. M. Feenstra, D. W. Greve, J. C. Moore, M. D. Sievert, and A. A. Baski, Appl. Phys. Lett. 86, 121914 (2005).
    [106] S. Ito, H. Fujioka, J. Ohta, A. Kobayashi, T. Honke, H. Miki, and M. Oshima, Thin Solid Films, 457, 118 (2004).
    [107] K. Kano, and M. Akatsuka, Plasma Sources Sci. Technol. 9, 314 (2000).
    [108] S. Kosaraju, J. A. Marino, J. A. Harvey, and C. A. Wolden, J. Cryst. Growth. 286, 400 (2006).
    [109] P. Singh, P. Ruterana, M. Morales, F. Goubilleau, M. Wojdak, J. F. Carlin, M. Ilegems, and D. Chateigner, Superlattices and Microstructures, 36, 537 (2004).

    下載圖示 校內:2012-07-31公開
    校外:2012-07-31公開
    QR CODE