簡易檢索 / 詳目顯示

研究生: 陳世乾
Chen, Shi-Qian
論文名稱: 以計畫行為理論(TPB)探討AI英語學習APP使用意圖
Exploring the Intention to Use AI English Learning Apps through the Theory of Planned Behavior (TPB)
指導教授: 林佑鴻
Lin, You-Hung
學位類別: 碩士
Master
系所名稱: 管理學院 - 企業管理學系
Department of Business Administration
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 107
中文關鍵詞: 計畫行為理論價格合理性知覺有用性社群媒體影響人工智慧AI英語學習使用意圖
外文關鍵詞: Theory of Planned Behavior, Perceived Price Fairness, Perceived Usefulness, Social-Media Influence, AI-Based English Learning, Intention to Use
相關次數: 點閱:22下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著人工智慧(AI)技術的迅速發展,生成式AI逐漸被廣泛應用於教育科技領域,特別是在語言學App的開發與推廣上,已成為教育市場的重要趨勢。然而,現有研究大多侷限於單一理論架構,未能整合多元理論全面解釋使用者的採用動機。因此,本研究以計畫行為理論(TPB)為基礎,並結合科技接受模型(TAM)、公平性理論及兩級傳播理論,建構一個多構面的行為意圖分析模型,深入探討消費者對於AI英語學習App的使用意圖。 本研究透過網路問卷調查,共回收580份有效問卷,並運用結構方程模型(Structural Equation Modeling, SEM)進行資料分析。研究結果顯示,消費者的「知覺有用性」、「社群媒體影響」、「同儕影響」以及「技術促進條件」對消費者態度、主觀規範和知覺行為控制有顯著正向影響,進而顯著提升消費者對AI英語學習App的使用意圖。然而,「知覺價格合理性」則對態度不具有顯著影響。具體而言,消費者認為產品的實際學習效能與使用體驗比價格因素更具影響力;此外,社群媒體及同儕推薦所營造的社會支持氛圍,有效提升消費者的正面態度及採用意圖;完善的技術支援條件亦能增強消費者的使用信心。因此,本研究建議AI英語學習App的開發與推廣應著重於提高產品的實際功能價值,透過社群媒體和同儕影響力提升消費者認同,並提供完善的技術資源與支援服務,進一步強化消費者的採用意圖,促使其從興趣轉化為實際行動。

    In response to the rapid proliferation of generative AI within educational technology, this study constructs a comprehensive model of behavioral intention toward AI‐driven English-learning applications by integrating the Theory of Planned Behavior (TPB) with the Technology Acceptance Model (TAM), Equity Theory, and the Two‐Step Flow of Communication. Drawing on 580 valid online survey responses and employing Structural Equation Modeling, our analysis demonstrates that perceived usefulness, social media influence, peer recommendations, and facilitating conditions each exert a significant positive impact on attitude, subjective norm, and perceived behavioral control, which in turn drive users’ intentions to adopt these applications. Conversely, perceived price fairness fails to shape attitude, indicating that learners prioritize demonstrable learning efficacy and user experience over cost considerations. These findings highlight three strategic imperatives for developers and educators: first, to enhance core functional value and usability so as to maximize perceived usefulness; second, to cultivate a supportive social ecosystem through peer endorsements and targeted social-media engagement, thereby reinforcing normative pressures; and third, to ensure robust technical infrastructure and user support to bolster confidence and ease of use, ultimately translating initial interest into sustained adoption.

    中文摘要 I 英文摘要 II 銘謝 VIII 表目錄 XI 圖目錄 XIII 第一章 緒論 1  第一節 研究背景與動機 1  第二節 研究目的 3  第三節 研究流程 4 第二章 文獻探討 7  第一節 AI應用於教育科技 7  第二節 科技接受模型 10  第三節 計畫行為理論 12 第三章 研究方法 18  第一節 研究架構 18  第二節 研究假說 19  第三節 問卷設計 25  第四節 前測結果 31  第五節 資料分析方法 35 第四章 資料分析與研究結果 38  第一節 樣本資料分析 38  第二節 敘述性統計 41  第三節 驗證性因素分析 50  第四節 共同方法偏誤檢驗 66  第五節 結構模型分析 68 第五章 結論與建議 73  第一節 研究結論 73  第二節 研究貢獻 76  第三節 研究限制 78  第四節 未來研究建議 79 參考文獻 81 附錄 82

    吳弈錡、陳子祥、林彥(2021)。人工智慧產業之發展與應用。理律新知, 2021(5), 14–16。
    吳舒婷(2010)。藥妝品購買行為意圖探討-創新擴散模型及計畫行為理論(TPB)觀點,國立成功大學企業管理學研究所。
    廖御超(2006)。影響採用創新產品之相關因素探討--以3G手機為例,國立東華大學企業管理學研究所。
    黃智強(2000)。影響採用網路購物因素之研究-以網路書店為例,國立中央大學資訊管理研究所。
    計算機輔助教學維基。〈計算機輔助教學〉。取自 https://wiki.mbalib.com/zh-tw/计算机辅助教学
    Abanoz, E. (2022). The Flow of Influence From Two-Step to Network Perspectives. In Opportunities and Challenges for Computational Social Science Methods (pp. 188–203). IGI Global.
    Afiat, M., Rijal, S., Koesoemasari, D., Furqan, A., & Abdullah, M. (2023). Learning Strategies in Developing Entrepreneurial Intention Among Students: Theory of Planned Behavior Approach. Jurnal Kependidikan: Jurnal Hasil Penelitian dan Kajian Kepustakaan di Bidang Pendidikan, Pengajaran dan Pembelajaran.
    Ahsan, N., & Rais, M. (2024). The Influence of Social Media Influencers on Consumer Decision-Making: A Comprehensive SEM Analysis. International Journal of Social Science & Entrepreneurship.
    Bandura, A. (1982). Self-efficacy mechanism in human agency. American Psychologist, 37(2), 122–147.
    Bhattacherjee, A. (2000). Acceptance of e-commerce services: The case of electronic brokerages. IEEE Transactions on Systems, Man, and Cybernetics – Part A: Systems and Humans, 30(4), 411–420.
    Bolton, L. E., Warlop, L., & Alba, J. W. (2003). Consumer perceptions of price (un)fairness. Journal of Consumer Research, 29(4), 474–491.
    Brown, T., & Lee, H. (2018). Formal rights and practical access: Reassessing legal equality. Policy & Society.
    Burt, R. S. (1992). Structural Holes: The Social Structure of Competition. Harvard University Press.
    Burt, R. S. (1999). The social capital of opinion leaders. The Annals of the American Academy of Political and Social Science, 566, 37–54.
    Campbell, M. C. (1999). Perceptions of price unfairness: Antecedents and consequences. Journal of Marketing Research, 36(2), 187–199.
    Campbell, T. (2013). Human Rights: Moral or Legal?
    Chapuis, J. M. (2012). Price Fairness versus Pricing Fairness (SSRN Working Paper No. 2015112, 12 pp.).
    Chen, Y. (2010). Social inclusion and the limits of legal recognition. Taiwan Journal of Social Policy.
    Choe, J., Kim, J., & Hwang, J. (2021). Innovative robotic restaurants in Korea: Merging a technology acceptance model and theory of planned behaviour. Asian Journal of Technology Innovation, 30, 466–489.
    Chu, S. C., & Kim, Y. (2011). Determinants of consumer engagement in electronic word-of-mouth (eWOM) in social networking sites. International Journal of Advertising, 30(1), 47–75.
    Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly, 13(3), 319–340.
    Davis, F. D., & Venkatesh, V. (1996). A critical assessment of potential measurement biases in the Technology Acceptance Model: Three experiments. International Journal of Human-Computer Studies, 45(1), 19–45.
    Djamasbi, S., Tullis, T., Girouard, M., Hebner, M., Krol, J., & Terranova, M. (2006). Web accessibility for visually impaired users: Extending the Technology Acceptance Model (TAM). Proceedings of the 12th Americas Conference on Information Systems (AMCIS 2006), Acapulco, Mexico, 4–6 Aug 2006, pp. 1–6.
    Digital English Language Learning Market Analysis, Size, and Forecast 2025–2029: APAC, Europe, North America, South America, Middle East & Africa.
    Artificial Intelligence Index Report 2024. arXiv:2405.19522.
    Artificial Intelligence: 70 Years Down the Road. arXiv:2303.02819.
    Firman, F., Anra, Y., Pratama, R., & Tersta, F. (2021). Factors affecting intentions and behaviour of plagiarism among students in Jambi University. SPEKTRUM: Jurnal Pendidikan Luar Sekolah, 9(4), 462–472.
    Friedkin, N., & Cook, K. (1990). Peer group influence. Sociological Methods & Research, 19, 122–143.
    Haryanto, B. (2014). The antecedent variables of attitude in forming intention to switch smartphone (Samsung brand in Surakarta). European Journal of Business and Social Sciences, 3(6), 126–135.
    Haws, K. L., & Bearden, W. O. (2006). Dynamic pricing and consumer fairness perceptions. Journal of Consumer Research, 33(3), 304–311.
    Henseler, J., Ringle, C. M., & Sarstedt, M. (2015). A new criterion for assessing discriminant validity in variance-based SEM. Journal of the Academy of Marketing Science, 43, 115–135.
    Hidayati, N. Y., & Destiana, R. (2023). The influence of attitude, subjective norms, perceived behavioural control, and financial literacy on investment intention. Return: Study of Economic and Business Management, 2(7), 718–729.
    Humida, T., Mamun, M., & Keikhosrokiani, P. (2021). Predicting behavioral intention to use e-learning system: A case study in Begum Rokeya University. Education and Information Technologies.
    Janadari, M., Ramalu, S., & Wei, C. (2016). Evaluation of measurement and structural model of reflective constructs in PLS-SEM.
    Jin-xue, F. (2004). On the double-side of human rights.
    Joo, Y., Seok, H., & Nam, Y. (2020). The moderating effect of social media use on sustainable rural tourism: A TPB model. Sustainability, 12, 4095.
    Katz, E., & Lazarsfeld, P. F. (1955). Personal Influence: The Part Played by People in the Flow of Mass Communications. Free Press.
    Kim, A. J., & Dennis, A. R. (2019). Says who? The effects of presentation format and source rating on fake news in social media. MIS Quarterly, 43(3), 1025–1039.
    Kim, D. H., & Jeong, Y.-M. (2024). Examining the moderating effect of perceived risk from particulate matter on outdoor sports participants: A TPB perspective.
    Kock, N. (2015). Common method bias in PLS-SEM: A full collinearity assessment approach. International Journal of e-Collaboration, 11, 1–10.
    Kock, N. (2022). Testing and controlling for endogeneity in PLS-SEM with stochastic instrumental variables. Data Analysis Perspectives Journal, 3(3), 1–6.
    Kumar, A., Arora, M., & Saini, M. (2022). Influence of mathematics on academic performance: A PLS-SEM approach. International Journal of System Assurance Engineering and Management, 14, 367–376.
    Lewis, J. R. (2019). Comparison of four TAM item formats: Effect of response-option labels and order. Journal of Usability Studies, 14(4), 224–236.
    Liao, C. (2024). Exploring social media determinants in fostering pro-environmental behavior: Insights from social impact theory and TPB. Frontiers in Psychology, 15.
    Lingappa, A., Shah, A., & Mathew, A. (2020). Academic, family, and peer influence on entrepreneurial intention. SAGE Open, 10.
    Lin, C. (2015). Formal entitlement versus substantive enjoyment: A welfare-rights perspective. East Asian Policy Review.
    Lynn, A.-M., & Huang, J.-H. (2019). Physicians’ intention to provide exercise counselling: A TPB study. Translational Behavioral Medicine.
    McCluskey, M. T. (2011). Defending and developing critical feminist theory as law leans rightward.
    Nong, L., Liu, G., & Tan, C. (2021). An empirical study on AI-assisted language teaching for improving learners’ ability. In 2021 International Conference of Educational Innovation through Technology (EITT) (pp. 215–221). IEEE.
    Park, S., & Lee, J. (2022). The influence of Theory of Planned Behavior on the perceived ease of use and perceived usefulness in accounting-information users. Korean Association of Computers and Accounting, 20(2), 23–45.
    Pokrivčáková, S. (2019). Preparing teachers for AI-powered technologies in language education. Journal of Language and Cultural Education, 7, 135–153.
    Rönkkö, M., & Cho, E. (2022). An updated guideline for assessing discriminant validity. Organizational Research Methods, 25(1), 6–14.
    Sarstedt, M., Hair, J. F., & Ringle, C. M. (2022). PLS-SEM: Indeed a silver bullet – retrospective observations and recent advances. Journal of Marketing Theory and Practice, 31(3), 261–275.
    Shaliha, A., & Marsasi, E. (2024). Attitude, perceived risk, and intention to adopt: A TPB study of Generation Z. EKOMBIS Review.
    Song, C., & Song, Y. (2023). Enhancing academic-writing skills with ChatGPT in EFL learning. Frontiers in Psychology, 14.
    Subhaktiyasa, P. (2024). PLS-SEM for Multivariate Analysis: A Practical Guide to Educational Research Using SmartPLS. EduLine.
    Susilo, R., Daniawan, B., Wijaya, A., & Suwitno, S. (2021). Acceptance of e-commerce customers based on TAM. bit-Tech. https://doi.org/10.32877/BT.V3I3.165
    Vaidyanathan, R., & Aggarwal, P. (2003). Who is the fairest of them all? Journal of Business Research, 56(6), 453–463.
    Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User acceptance of information technology: Toward a unified view. MIS Quarterly, 27(3), 425–478.
    Watts, D. J., & Dodds, P. S. (2007). Influentials, networks, and public-opinion formation. Journal of Consumer Research, 34(4), 441–458.
    Weimann, G. (1982). On the importance of marginality: One more step into the two-step flow of communication. American Sociological Review, 47, 764–773.
    Weimann, G. (1994). The Influentials: People Who Influence People. SUNY Press.
    Xu, L., Zhang, J., Ding, Y., Zheng, J., Sun, G., Zhang, W., & Philbin, S. (2023). Peer pressure and engineering students’ learning behaviour: A TPB perspective. Frontiers in Public Health, 10.
    Yuen, K., Huyen, D., Wang, X., & Qi, G. (2020). Factors influencing adoption of shared autonomous vehicles. International Journal of Environmental Research and Public Health, 17.
    Zolait, A. (2014). Perceived behavioural control in the Theory of Planned Behaviour. Behaviour & Information Technology, 33, 65–85.
    Zhu, Y. (2024). The impact of AI-assisted teaching on students’ learning and psychology. Journal of Education, Humanities and Social Sciences, 38, 111–116.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE