簡易檢索 / 詳目顯示

研究生: 江淯瑄
Jiang, Yu-Xuan
論文名稱: 以數值模擬探討鋁單晶的晶體方位對凸耳行為之影響
Effect of Orientation on Earing Behavior of Aluminum Single Crystals Using Numerical Simulations
指導教授: 郭瑞昭
Kuo, Jui-Chao
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 151
中文關鍵詞: 凸耳Lankford coefficient (r值)晶體塑性有限元素法晶體旋轉滑移系統
外文關鍵詞: earing, crystal plasticity finite element method, crystal rotation, slip system
相關次數: 點閱:67下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 中文摘要 I Extended Abstract III 誌謝 XIV 目錄 XVI 表目錄 XX 圖目錄 XXII 第一章 前言 1 第二章 文獻回顧 3 2.1 深沖集合組織對凸耳之影響 3 2.2 凸耳預測之數值分析模型 5 2.2.1 Hill criteria and Lankford Coefficient 5 2.2.2 有限元素法模擬模型 9 2.2.3 單晶材料晶體塑性模型 20 2.2.4 多晶材料數值分析模型 24 第三章 凸耳預測之數值分析模型 39 3.1 多晶材料數值分析模型 39 3.1.1 r值之計算 39 3.1.2 數值分析模型之比較 43 3.2 有限元素法(FEM)模擬模型 45 3.2.1 深沖模擬之幾何參數 45 3.2.2  FEM材料硬化模型 47 3.2.3 等向性與異向性材料 50 3.3 單晶材料晶體塑性模型 52 3.4 晶體塑性有限元素法(CP-FEM)模擬模型 53 3.4.1 試片座標之旋轉 54 3.4.2 分析流程與晶體方位的選擇 55 第四章 數值模擬結果 56 4.1 多晶材料數值分析模型 56 4.2 有限元素法(FEM)模擬模型 59 4.3 單晶材料晶體塑性模型 60 4.4 晶體塑性有限元素法(CP-FEM)模擬模型 63 4.4.1 杯型之演變 63 4.4.2 晶體方位之旋轉 67 第五章 討論 72 5.1 集合組織對凸耳行為之影響 72 5.1.1 單晶模型之比較 72 5.1.2 集合組織與凸耳行為 76 5.2 晶體方位旋轉之探討 77 5.2.1 晶體旋轉軸之預測 77 5.2.2 晶體旋轉之成因 79 5.2.3 滑移系統與晶體旋轉之關係 82 5.3 晶體塑性變形與凸耳生成之關係 89 5.3.1 元素A之分析 91 5.3.2 元素B之分析 95 5.3.3 元素D之分析 99 5.3.4 元素E之分析 103 5.3.5 元素分析之彙整 107 5.4 多晶材料數值分析模型之分析 110 第六章 結論 112 參考文獻 114

    1. F. Roters and Z. Zhao, Application of the Texture Component Crystal Plasticity Finite Element Method for Deep Drawing Simulations—A Comparison with Hill’s Yield Criterion. Advanced Engineering Materials, 2002. 4(4): pp. 221-223.
    2. R. Hill, A Theory of the Yielding and Plastic Flow of Anisotropic Metals. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 1948. 193(1033): pp. 281-297.
    3. G.E.G. Tucker, Texture and earing in deep drawing of aluminium. Acta Metallurgica, 1961. 9(4): pp. 275-286.
    4. N. Kanetake, Y. Tozawa, and T. Otani, Calculations from texture of earing in deep drawing for FCC metal sheets. International Journal of Mechanical Sciences, 1983. 25(5): pp. 337-345.
    5. O. Engler and S. Kalz, Simulation of earing profiles from texture data by means of a visco-plastic self-consistent polycrystal plasticity approach. Materials Science and Engineering: A, 2004. 373(1): pp. 350-362.
    6. I. Tikhovskiy, D. Raabe, and F. Roters, Simulation of earing during deep drawing of an Al–3% Mg alloy (AA 5754) using a texture component crystal plasticity FEM. Journal of Materials Processing Technology, 2007. 183(2): pp. 169-175.
    7. K. Inal, P.D. Wu, and K.W. Neale, Simulation of earing in textured aluminum sheets. International Journal of Plasticity, 2000. 16(6): pp. 635-648.
    8. F. Barlat, D.J. Lege, and J.C. Brem, A six-component yield function for anisotropic materials. International Journal of Plasticity, 1991. 7(7): pp. 693-712.
    9. Z. Zhao, W. Mao, F. Roters, and D. Raabe, A texture optimization study for minimum earing in aluminium by use of a texture component crystal plasticity finite element method. Acta Materialia, 2004. 52(4): pp. 1003-1012.
    10. 張少睿, 李大永, 羅應兵, and 彭穎紅, 基於率無關晶體塑性模型的深衝制耳分析. 材料研究學報, 2004. 18(6): pp. 623-629.
    11. Y.P. Chen, W.B. Lee, and S. To, Influence of initial texture on formability of aluminum sheet metal by crystal plasticity FE simulation. Journal of Materials Processing Technology, 2007. 192-193: pp. 397-403.
    12. Y. Shi, H. Jin, and P.D. Wu, Analysis of cup earing for AA3104-H19 aluminum alloy sheet. European Journal of Mechanics - A/Solids, 2018. 69: pp. 1-11.
    13. W. Liu, B.K. Chen, and Y. Pang, Numerical investigation of evolution of earing, anisotropic yield and plastic potentials in cold rolled FCC aluminium alloy based on the crystallographic texture measurements. European Journal of Mechanics - A/Solids, 2019. 75: pp. 41-55.
    14. W. Liu, B.K. Chen, Y. Pang, and A. Najafzadeh, A 3D phenomenological yield function with both in and out-of-plane mechanical anisotropy using full-field crystal plasticity spectral method for modelling sheet metal forming of strong textured aluminum alloy. International Journal of Solids and Structures, 2020. 193-194: pp. 117-133.
    15. F. Sun, P. Liu, and W. Liu, Multi-level deep drawing simulations of AA3104 aluminium alloy using crystal plasticity finite element modelling and phenomenological yield function. Advances in Mechanical Engineering, 2021. 13.
    16. S. Wang, H. Shang, Z. Zhang, and Y. Lou, Multi-scale numerical investigation of deep drawing of 6K21 aluminum alloy by crystal plasticity and a stress-invariant based anisotropic yield function under non-associated flow rule. Journal of Manufacturing Processes, 2023. 102: pp. 736-755.
    17. J. Sidor, R.H. Petrov, and L.A.I. Kestens, Deformation, recrystallization and plastic anisotropy of asymmetrically rolled aluminum sheets. Materials Science and Engineering: A, 2010. 528(1): pp. 413-424.
    18. C. Wang, D. Li, B. Meng, and M. Wan, Effect of Anisotropic Yield Functions on Prediction of Critical Process Window and Deformation Behavior for Hydrodynamic Deep Drawing of Aluminum Alloys. Metals, 2020. 10(4): p. 492.
    19. P. Dasappa, K. Inal, and R. Mishra, The effects of anisotropic yield functions and their material parameters on prediction of forming limit diagrams. International Journal of Solids and Structures, 2012. 49(25): pp. 3528-3550.
    20. J.W. Yoon, R.E. Dick, and F. Barlat, A new analytical theory for earing generated from anisotropic plasticity. International Journal of Plasticity, 2011. 27(8): pp. 1165-1184.
    21. D. Banabic, F. Barlat, O. Cazacu, and T. Kuwabara, Advances in anisotropy and formability. International Journal of Material Forming, 2010. 3: pp. 165-189.
    22. L. Bourne and R. Hill, LX. On the correlation of the directional properties of boiled shee in tension and cupping tests. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1950. 41(318): pp. 671-681.
    23. F. Barlat, S. Panchanadeeswaran, and O. Richmond, Earing in cup drawing face-centered cubic single crystals and polycrystals. Metallurgical Transactions A, 1991. 22(7): pp. 1525-1534.
    24. F. Barlat, K. Chung, and O. Richmond, Anisotropic plastic potentials for polycrystals and application to the design of optimum blank shapes in sheet forming. Metallurgical and Materials Transactions A, 1994. 25(6): pp. 1209-1216.
    25. J.W. Yoon, F. Barlat, K. Chung, F. Pourboghrat, and D.Y. Yang, Influence of initial back stress on the earing prediction of drawn cups for planar anisotropic aluminum sheets. Journal of Materials Processing Technology, 1998. 80-81: pp. 433-437.
    26. J.W. Yoon, F. Barlat, K. Chung, F. Pourboghrat, and D.Y. Yang, Earing predictions based on asymmetric nonquadratic yield function. International Journal of Plasticity, 2000. 16(9): pp. 1075-1104.
    27. J.W. Yoon, F. Barlat, R.E. Dick, and M.E. Karabin, Prediction of six or eight ears in a drawn cup based on a new anisotropic yield function. International Journal of Plasticity, 2006. 22(1): pp. 174-193.
    28. M. Firat, A numerical analysis of sheet metal formability for automotive stamping applications. Computational Materials Science, 2008. 43(4): pp. 802-811.
    29. T. Lankford W, New criteria for predicting the performance of deep drawing sheets. Transactions of American Society for Metals, 1950. 42: pp. 1197-1232.
    30. S. Kodukula, T. Manninen, and D. Porter, Estimation of Lankford Coefficients of Austenitic and Ferritic Stainless Steels using Mean Grain Orientations from Micro-texture Measurements. ISIJ International, 2021. 61(1): pp. 401-407.
    31. H. Aretz and O. Engler, Accuracy assessment of analytical earing models. European Journal of Mechanics - A/Solids, 2019. 78: p. 103839.
    32. F. Roters, P. Eisenlohr, L. Hantcherli, D.D. Tjahjanto, T.R. Bieler, and D. Raabe, Overview of constitutive laws, kinematics, homogenization and multiscale methods in crystal plasticity finite-element modeling: Theory, experiments, applications. Acta Materialia, 2010. 58(4): pp. 1152-1211.
    33. E. Kröner, Zur plastischen verformung des vielkristalls. Acta Metallurgica, 1961. 9(2): pp. 155-161.
    34. C. Teodosiu, Large plastic deformation of crystalline aggregates. Vol. 376. 1997: Springer, Vienna.
    35. R.J. Asaro and A. Needleman, Overview no. 42 Texture development and strain hardening in rate dependent polycrystals. Acta Metallurgica, 1985. 33(6): pp. 923-953.
    36. D. Peirce, R.J. Asaro, and A. Needleman, An analysis of nonuniform and localized deformation in ductile single crystals. Acta Metallurgica, 1982. 30(6): pp. 1087-1119.
    37. D. Peirce, R.J. Asaro, and A. Needleman, Material rate dependence and localized deformation in crystalline solids. Acta Metallurgica, 1983. 31(12): pp. 1951-1976.
    38. S.R. Kalidindi, C.A. Bronkhorst, and L. Anand, Crystallographic texture evolution in bulk deformation processing of FCC metals. Journal of the Mechanics and Physics of Solids, 1992. 40(3): pp. 537-569.
    39. E. Demir, A physically based constitutive model for FCC single crystals with a single state variable per slip system. Modelling and Simulation in Materials Science and Engineering, 2017. 25: 015009.
    40. J. Hu, Z. Marciniak, and J. Duncan, Mechanics of sheet metal forming. 2002: Butterworth-Heinemann, Oxford, United Kingdom.
    41. A.P. Clarke, P. Van Houtte, and S. Saimoto, A quantitative analysis of earing during deep drawing of TiN plate and aluminium. Materials Science Forum, 1994. 157(pt 2): pp. 1953-1960.
    42. H. Aretz and O. Engler, Accuracy analysis of earing compensation procedures. International Journal of Solids and Structures, 2020. 191-192: pp. 418-433.
    43. D.W. Lin, D. Daniel, and J.J. Jonas, Simulation of earing in textured materials. Materials Science and Engineering: A, 1991. 131(2): pp. 161-170.
    44. J. Hu, T. Ishikawa, and K. Ikeda, Analysis on earing behavior of textured pure aluminum and A5083 alloy sheets. Journal of Materials Processing Technology, 1998. 83(1): pp. 200-208.
    45. K. Chung, S.Y. Lee, F. Barlat, Y.T. Keum, and J.M. Park, Finite element simulation of sheet forming based on a planar anisotropic strain-rate potential. International Journal of Plasticity, 1996. 12(1): pp. 93-115.
    46. P. Ludwik, Elemente der technologischen Mechanik. 1909: Springer, Berlin, Germany.
    47. X. Hu, K. Choi, X. Sun, and S. Golovashchenko, Edge Fracture Prediction of Traditional and Advanced Trimming Processes for AA6111-T4 Sheets. Journal of Manufacturing Science and Engineering, 2014. 136: p. 021016_1-021016_11.
    48. H. Tian, B. Brownell, M. Baral, and Y.P. Korkolis, Earing in cup-drawing of anisotropic Al-6022-T4 sheets. International Journal of Material Forming, 2017. 10(3): pp. 329-343.
    49. S. Bagherzadeh, M.J. Mirnia, and B. Mollaei Dariani, Numerical and experimental investigations of hydro-mechanical deep drawing process of laminated aluminum/steel sheets. Journal of Manufacturing Processes, 2015. 18: pp. 131-140.
    50. E. Demir, N. Grilli, TarletonGroup, and D.C. Garza. TarletonGroup/ CrystalPlasticity. Available from: https://github.com/TarletonGroup/CrystalPlasticity.
    51. Z. Hu, Y. Zhang, and L. Guo, Crystal Plasticity Finite Element Simulation Study on Thread Rolling Pure Aluminum. Journal of Physics: Conference Series, 2021. 1802(4): p. 042077.
    52. P.B. Mellor and A. Parmar, Plasticity Analysis of Sheet Metal Forming, in Mechanics of Sheet Metal Forming: Material Behavior and Deformation Analysis, D.P. Koistinen and N.-M. Wang, Editors. 1978, Springer US: Boston, MA. pp. 53-77.
    53. F. Barlat, J.C. Brem, J.W. Yoon, K. Chung, R.E. Dick, D.J. Lege, F. Pourboghrat, S.H. Choi, and E. Chu, Plane stress yield function for aluminum alloy sheets—part 1: theory. International Journal of Plasticity, 2003. 19(9): pp. 1297-1319.
    54. F. Barlat, H. Aretz, J.W. Yoon, M.E. Karabin, J.C. Brem, and R.E. Dick, Linear transfomation-based anisotropic yield functions. International Journal of Plasticity, 2005. 21(5): pp. 1009-1039.

    無法下載圖示 校內:2029-07-22公開
    校外:2029-07-22公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE