簡易檢索 / 詳目顯示

研究生: 陳俊杉
Chen, Jyun-shan
論文名稱: 圓柱或球型異向性材料的屏蔽模擬
Simulation of the cloaking phenomena of curvilinear anisotropic media
指導教授: 陳東陽
Chen, Tung-yang
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 79
中文關鍵詞: 座標轉換屏蔽裝置曲線異向性材料
外文關鍵詞: coordinate transformation, curvilinear anisotropic materials, cloaking
相關次數: 點閱:134下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文以傳導的物理行為設計適當的材料係數來包覆曲線異向性材料中任意形狀以及性質的物體,藉由此設計適當的材料能夠控制能量(例如熱通量)前進的方向,並且會循著某特定之軌跡繞過物體回到原本行進的方向而不受到任何的干擾,對於外界的觀察者而言此被包覆的物體就像是隱形一樣,而這層包覆物體的裝置稱為「屏蔽裝置」。 本文設計出在圓柱型以及球型異向性材料中的屏蔽裝置,此類型的材料主要特徵在於材料係數在某些極座標特定方向為常數,以圓柱型異向性材料為例,其材料係數在徑向、切線方向以及軸向的數值都不同,因此在屏蔽裝置的設計方面與均向性材料或者直角異向性材料的情況不同在於屏蔽裝置的中心位置與材料的中心位置通常並不會一致。 本文證實如果將平移過後屏蔽裝置中心與曲線異向性材料中心使用一致的座標系統,則先前的座標轉換方式仍然適用,而且轉換後的材料係數會同時與屏蔽裝置中心位置以及背景材料有關。 本文同時以數值模擬的方法來展示此裝置的效果,藉由模擬的結果證實了在曲線異向性材料中的屏蔽裝置確實能夠達到屏蔽物體的效果。

    Based on the form-invariant of the conductivity equation under coordinate transformation, we design the transformed material properties to control and direct the fields traveling around an arbitrary object, in which the background material is curvilinearly anisotropic. The layer that to make the object invisible is called “cloaking”. Specific results are derived for cylindrically orthotropic and spherically transversely isotropic media. Materials with curvilinear anisotropy possess constants properties in specific curvilinear coordinate systems. For example, cylindrically orthotropic material is characterized by that the material properties in the radial, tangential, and axial directions are distinct. In contrast to the isotropic or rectilinearly anisotropic media, the position of cloaking center and the material origin may not be the same. We show that, by incorporation of these two positions, the previous coordinate transformation procedure remains applicable and the transformed material specifications now depends on the position of cloaking center and the background material properties. We also use the numerical simulation to perform the properties of the cloak. The results of the simulation show that the cloak with the proposed parameters performs well in these curvilinear anisotropic media.

    中文摘要 I Abstract II 誌謝 III 目錄 IV 表目錄 VI 圖目錄 VII 符號表 X 第一章 緒論 1 第二章 座標轉換下物理方程式的不變性 8 2.1 基本傳導方程式的不變性 8 2.2 Maxwell方程式的不變性 13 第三章 座標轉換下單一均向性材料中的屏蔽效應 14 3.1 座標轉換下單一均向性材料中的球體屏蔽 14 3.2 座標轉換下單一均向性材料中的圓柱體屏蔽 17 3.3 模擬二維單一均向性材料熱傳導屏蔽效應 19 3.4 模擬二維多層間斷均向性材料電磁波屏蔽效應 24 第四章 曲線異向性材料中任意點的物理屏蔽效應 28 4.1 圓柱型異向性材料任意點之物理屏蔽效應 29 4.2 球型異向性材料任意點之物理屏蔽效應 32 4.3 模擬二維圓柱型異向性材料熱傳導屏蔽效應 36 4.4 模擬三維球型異向性材料熱傳導屏蔽效應 43 第五章 結論與未來展望 47 參考文獻 48 附錄A Maxwell方程式的不變性 52 附錄B 聲波(acoustic)傳導方程式的不變性 59 附錄C 座標轉換下的正方體屏蔽 61 附錄D 模擬二維單一均向性材料電磁波屏蔽效應 66 附錄E 雙層均向性材料中的物理屏蔽效應 70 自述 79

    Alù, A. and Engheta, N., “Achieving transparency with plasmonic and metamaterial coatings”, Physical Review E 72, 016623 (2005).

    Cai, W., Chettiar, U. K., Kildishev, A. V. and Shalaev, V. M., “Optical cloaking with metamaterials”, Nature photonics 1, 224-227 (2007).

    Chen, T. and Kuo, H. Y., “Transport properties of composites consisting of periodic arrays of exponentially graded cylinders with cylindrically orthotropic materials”, Journal of Applied Physics 98, 033716 (2005).

    Chen, H. and Chan, C. T., “Transformation media that rotate electromagnetic field”, Applied Physics Letters 90, 241105 (2007a).

    Chen, H. and Chan, C. T., “Acoustic cloaking in three dimensions using acoustic metamaterials”, Applied Physics Letters 91, 183518 (2007b).

    Chen, H., Wu, B-I., Zhang, B. and Kong, J. A., “Electromagnetic Wave Interactions with a Metamaterial Cloak”, Physical Review Letters 99, 063903 (2007).

    Cummer, S. A., Popa, B-I., Schurig, D., Smith, D. R., and Pendry, J. B., “Full-wave simulations of electromagnetic cloaking structures”, Physical Review E 74, 036621 (2006).

    Cummer, S. A. and Schurig, D., “One path to acoustic cloaking”, New Journal of Physics 9, 45 (2007).

    Greenleaf, A., Lassas, M. and Uhlmann, G., “Anisotropic conductivities that cannot be detected by EIT”, Physiological Measurement 24, 413-419 (2003a).

    Greenleaf, A., Lassas, M. and Uhlmann, G., “On nonuniquess for calderon’s inverse problem”, Mathematical Research Letters 10, 685-693 (2003b).

    Huang, Y., Feng, Y. and Jiang, T., “Electromagnetic cloaking by layered structure of homogeneous isotropic materials”, Optics Express 15, 18, 11133 (2007).

    Kuo, H. Y. and Chen, T., “Effective transport properties of arrays of multicoated or graded spheres with spherically transversely isotropic constituents”, Journal of Applied Physics 99, 093702 (2006).

    Kwon, D.-H. and Werner, D. H., “Two-dimensional eccentric elliptic electromagnetic cloaks”, Applied Physics Letters 92, 013505 (2008).

    Leonhardt, U., “Optical conformal mapping”, Science 312, 1777 (2006a).

    Leonhardt, U., “Notes on conformal invisibility devices”, New Journal of Physics 8, 118 (2006b).

    Leonhardt, U. and Philbin, T. G. “General relativity in electrical engineering”, New Journal of Physics 8, 247 (2006).

    Li, J. S. and Chan, C. T., “Double-negative acoustic metamaterial”, Physical Review E 70, 055602(R) (2004).

    Ma, H., Qu, S., Xu, Z., Zhang, J., Chen, B. and Wang, J., “Material parameter equation for elliptical cylindrical cloaks”, Physical Review A 77, 013825 (2008).

    Mei, J., Liu, Z. Y., Wen, W. J. and Sheng, P., “Effective mass density of fluid-solid composites”, Physical Review Letters 96, 024301 (2006).

    Milton, G. W., Briane, M. and Willis, J. R., “On cloaking for elasticity and physical equations with a transformation invariant form”, New Journal of Physics 8, 248 (2006).

    Milton, G. W., “The Theory of Composites”, Cambridge: Cambridge University Press (2002).

    Norris, A. N., “Acoustic cloaking theory”, Proceedings of Royal Society A 464, 2411-2434 (2008).

    Pendry, J. B., “Negative refraction makes a perfect lens”, Physical Review Letters 85, 3966-3969 (2000).

    Pendry, J. B., Schurig, D. and Smith, D. R., “Controlling electromagnetic fields”, Science 312, 1780 (2006).

    Post, E. J., “Formal Structure of Electromagnetics: General Covariance and Electromagnetics”, New York, NY: Interscience (1962).

    Rahm, M., Schurig, D., Roberts, D. A., Cummer, S. A., Smith, D. R. and Pendry, J. B., “Design of electromagnetic cloaks and concentrators using form-invariant coordinate transformations of Maxwell’s equations”, Photonics and Nanostructures- Fundamentals and Applications 6, 87-95 (2008).

    Schurig, D., Pendry, J. B. and Simth, D. R., “Calculation of material properties and ray tracing in transformation media”, Optics Express 14, 21, 9794 (2006a).

    Schurig, D., Mock, J. J., Justice, B. J., Cummer, S. A., Pendry, J. B., Starr, A. F., Smith, D. R., “Metamaterial Electromagnetic Cloak at Microwave Frequencies”, Science 314, 5801, 977 – 980 (2006b).

    Schurig, D., Mock, J. J., Justice, B. J., Cummer, S. A., Pendry, J. B., Starr, A. F., Smith, D. R., “Transformation optics and metamaterials, a path to interesting devices”, (2006c)

    Torrent, D. and Sánchez-Dehesa, J., “Anisotropic mass density by two-dimensional acoustic metamaterials”, New Journal of Physics 10, 023004 (2008a).

    Torrent, D. and Sánchez-Dehesa, J., “Acoustic cloaking in two dimensions: a feasible approach”, New Journal of Physics 10, 063015 (2008b).

    Veselago, V. G., “The electrodynamics of substances with simulation negative values of and ”, Soviet Physics Uspekhi 10, 4 (1968).

    Ward, A. J. and Pendry, J. B., “Refraction and geometry in Maxwell’s equations”, Journal of Modern Optics 43, 4, 773-793 (1996).

    You, Y., Kattawar, G. W., Zhai, P-W. and Yang, P., “Invisibility cloaks for irregular particles using coordinate transformations”, Optics Express 16, 9, 6134 (2008).

    Zhang, B., Chen, H., Wu, B.-I., Luo, Y., Ran, L. and Kong, J. A., “Response of a cylindrical invisibility cloak to electromagnetic waves”, Physical Review B 76, 121101 (2007).

    Zhang, J., Huangfu, J., Luo, Y., Chen, H., Kong, J. A. and Wu, B-I., “Cloak for multilayered and gradually changing media”, Physical Review B 77, 035116 (2008).

    下載圖示 校內:2009-08-05公開
    校外:2009-08-05公開
    QR CODE