簡易檢索 / 詳目顯示

研究生: 朱田次瑲
Chu-Tien, Tzu-Tsang
論文名稱: 氯化鋅-氯化-1-乙基-3-甲基咪唑離子液體中電沉積鋅與鈀鋅合金
Electrodeposition of Zn and PdZn alloy in zinc chloride-1-ethyl-3-methylimidazolium chloride ionic liquid
指導教授: 孫亦文
Sun, I-Wen
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 112
中文關鍵詞: 離子液體氯化鋅-氯化-1-乙基-3-甲基咪唑電沉積
外文關鍵詞: ionic liquid, zinc chloride-1-ethyl-3- methylimidazolium chloride, electrodeposit
相關次數: 點閱:93下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文探討使用氯化鋅-氯化-1-乙基-3-甲基咪唑(zinc chloride-1-ethyl-3- methylimidazolium chloride;ZnCl2-EMIC)離子液體電沉積鋅與鈀/鋅合金,共分為兩部份:(一)將氯化鋅-氯化 1-乙基-3-甲基咪唑添加入EMI-BF4中,探討其成核反應與不同濃度對所得之鋅鍍層的形貌與性質的影響,(二)添加氯化鈀(PdCl2)至氯化鋅-氯化 1-乙基-3-甲基咪唑離子液體中,探討電沉積鈀/鋅合金奈米線與性質。利用定電位階升(chronoamperometry)法發現Zn(II)在70℃的玻璃碳電極還原成Zn(0)的成核機制為瞬時成核。在不使用模版的輔助及未施予攪拌的條件下,利用定電位方式進行電沉積,當施以足夠的過電位方式時,可獲得沿著基材垂直生長的鈀/鋅合金奈米線結構,利用置換反應與氧化剝削方式可以調控鈀/鋅奈米線中鈀對鋅的比例,其電沉積過程主要是以擴散控制成長,而電沉積所得之鈀/鋅合金奈米線可應用在乙醇催化。電沉積樣品之表面形貌、成份與晶形結構是以掃描式電子顯微鏡(SEM)、能量分散光譜儀(EDS)、X光繞射分析儀(XRD)與穿透式電子顯微鏡(TEM)進行分析鑑定。

    In this study, zinc chloride-1-ethyl-3-methylimidazolium chloride(ZnCl2-EMIC) ionic liquid has been used to electrodeposit (a) Zn from ZnCl2-EMIC diluted with EMI-BF4, and (b) PdZn alloy from ZnCl2-EMIC ionic liquid containing PdCl2. The morphologies of the Zn and PdZn alloys were examined with scanning electromicreoscopy(SEM), energy dispersive X-ray spectroscopy(EDS), X-ray diffraction(XRD) techniques, and Transmission Electron Microscope(TEM).
    Chronoamperometric results indicate that the deposition of Zn(II) on the GC electrode involved with a three-dimesional instantaneous nucleation/growth process at 70℃. Direct template-free electrodeposition of aligned PdZn nanofilaments was achieved on a tungsten substrate in a quiescent Lewis acidic ZnCl2–EMIC ionic liquid containing PdCl2 at 110 ℃ by applying an extremely large deposition overpotential. The Zn content in the PdZn alloy could be decreased by diaplacement reaction or anodic stripping. It is found that PdZn nanofilaments exhibit excellent catalytic activity for ethanol electrooxidation.

    摘要(I) Abstract(II) 誌謝(III) 目錄(IV) 圖目錄(VI) 表目錄(XII) 第一章 緒論(1) 1-1離子液體(Ionic liquild)(1) 1-2 ZnCl2-1-ethyl-3-methylimidazolium chloride (ZnCl2–EMIC)(5) 1-3 奈米線文獻回顧(8) 1-3-1 陽極氧化鋁模板輔助沉積法(9) 1-3-2 無模板方式電沉積(11) 1-4 乙醇催化(13) 1-5 研究動機與目的(14) 第二章 實驗原理與方法(16) 2-1 電化學原理(16) 2-2循環伏安法(Cyclic Votammetry, CV) (17) 2-3電流時間法(Chronoamperometry)(19) 2-4 電化學成核理論(19) 2-4-1 成核動力學(19) 2-4-2 二維空間的核成長(2D growth) (23) 2-4-3 三維空間的核成長(3D growth)(24) 第三章 實驗(31) 3-1 藥品(31) 3-2 融鹽的配置(33) 3-3 實驗裝置與儀器(34) 第四章 實驗結果與討論(38) 4-1 ZnCl2-EMIC在EMI-BF4融鹽中的行為(38) 4-1-1 ZnCl2-EMIC融鹽的電化學行為(38) 4-1-2 ZnCl2-EMIC在EMI-BF4融鹽中的電化學行為(39) 4-1-3 ZnCl2-EMIC在EMI-BF4融鹽中還原成Zn(0)的成核反應(43) 4-1-4 ZnCl2-EMIC在EMI-BF4融鹽中稀釋之電沉積行為(49) 4-1-5 EDS、XRD、TEM分析(64) 4-2 鈀鋅合金在PdCl2-ZnCl2-EMIC融鹽中的行為(70) 4-2-1 PdCl2-ZnCl2-EMIC融鹽的電化學行為(70) 4-2-2 鈀鋅合金的電沉積(72) 4-2-2-1 36-64mol% ZnCl2-EMIC融鹽中鈀鋅合金的電沉積(72) 4-2-2-2 50-50mol% ZnCl2-EMIC融鹽中鈀鋅合金的電沉積(76) 4-2-3 EDS、XRD、TEM分析(85) 4-2-4 鈀鋅合金的置換反應(91) 4-2-5 鈀鋅合金的氧化剝削鋅(95) 4-2-6 乙醇催化反應(98) 第五章 結論(109) 參考文獻(110)

    1. P. Walden, Bull. Acad. Imper. Sci., 1914, 1800.
    2. K. Seddon, Jornal of Chemical Technology and Biotechnology, 1997, 68, 351-356.
    3. Wilkes and J. S., Green Chemistry, 2002, 4, 73-80.
    4. K. Seddon, A. Stark and M. Torres, Pure Appl. Chem., 2000, 72, 2275–2287.
    5. Y. F. Lin and I W. Sun, Electrochimica Acta, 1999, 44, 2771-2777.
    6. J. S. Wilkes, J. A. Levisky, R. A. Wilson and C. L. Hussey, Inorganic Chemistry, 1982, 21, 1263-1264.
    7. S. I. Hsiu, J. F. Huang, I W. Sun, C. H. Yuan and J. Shiea, Electrochimica Acta, 2002, 47, 4367-4372.
    8. J. F. Huang and I W. Sun, Journal of The Electrochemical Society, 2002, 149, E348-E355.
    9. P. Y. Chen and I W. Sun, Electrochimica Acta, 2001, 46, 1169–1177.
    10. P. Y. Chen, M. C. Lin and I W. Sun, Journal of The Electrochemical Society, 2000, 147, 3350-3355.
    11. J. F. Huang and I W. Sun, Journal of The Electrochemical Society, 2004, 151, C8-C14.
    12. S. P. Gou and I W. Sun, Electrochimica Acta, 2008, 53, 2538-2544.
    13. J. F. Huang and I W. Sun, Electrochimica Acta, 2004, 49, 3251-3258.
    14. V. R. Almeida, C. A. Barrios, R. R. Panepucci and M. Lipson, Nature, 2004, 431, 1081-1084.
    15. C. Yang, Science, 2005, 310, 1304-1307.
    16. Y. Cui, Science, 2001, 293, 1289-1292.
    17. C. R. Martin, Science, 1994, 266, 1961-1966
    18. C. R. Martin, American Chemical Society, 1995, 28, 61-68.
    19. C. R. Martin and J. C. Hulteen, J. Mater. Chem., 1997, 7, 1075–1087.
    20. C. R. Martin, Chem. Mater., 1996, 8, 1739-1746.
    21. D. Routkevitch, T. Bigioni, M. Moskovits and J. M. Xu, J. Phys. Chem., 1996, 100, 14037-14047.
    22. T. M. Whitney, J. S. Jiang, P. C. Searson and C. L. Chien, Science 1993, 261, 1316.
    23. G. Zhao, C. Xu, D. Guo and H. Li, Applied Surface Science, 2007, 253, 3242-3246.
    24. F. Cheng, H. Wang, Z. Sun, M. Ning, Z. Cai and M. Zhang, Electrochemistry Communications, 2008, 10, 798-801.
    25. L. Liu and S. Park, Chemistry of Materials, 2011, 23, 1456–1460.
    26. J. M. Yang, S. P. Gou and I W. Sun, Chemical Communications, 2010, 46, 2686–2688.
    27. Y. T. Hsieh, T. I. Leong, C. C. Huang, C. S. Yeh and I W. Sun, Chemical Communications, 2010, 46, 484–486.
    28. C. Xu, L. Cheng, P. Shen and Y. Liu, Electrochemistry Communications, 2007, 9, 997-1001.
    29. Y. Sun, Z. Tao, J. Chen, T. Herricks and Y. Xia, J. AM. CHEM. SOC., 2004, 126, 5940-5941.
    30. L. Liu, E. Pippel, R. Scholz and U. Gosele, Nano Letter, 2009, 9, 4352-4358.
    31. L. Liu, H. Tian, S. Xie, W. Zhou, S. Mu, L. Song, D. Liu, S. Luo, Z. Zhang, Y. Xiang, X. Zhao, W. Ma, J. Shen, J. Li, C. Wang and G. Wang, J. Phys. Chem. B, 2006, 110, 20158-20165.
    32. J. Gong, Z. Dou, Q. Ding, Y. Xu and W. Zhu, Journal of Nanomaterials, 2010, 2010, 1-6.
    33. F. H. Yeh, C. C. Tai, J. F. Huang and I W. Sun, J. Phys. Chem. B, 2006, 110, 5215-5222.
    34. W. Zhou, D. Tang, A. Pan, Q. Zhang, Q. Wan and B. Zou, The Journal of Physical Chemistry C, 2011, 115, 1415-1421.
    35. F. Endres, Chem.phys.chem, 2002, 3, 144 -154.
    36. A. P. Abbott and K. J. McKenzie, Physical Chemistry Chemical Physics, 2006, 8, 4265–4279.
    37. M. Armand, F. Endres, D. R. MacFarlane, H. Ohno and B. Scrosati, nature materials, 2009, 8, 621-629.
    38. F. Endres, A. P. Abbott and D. R. MacFarlane, Electrodeposition from Ionic Liquids, Wiley-VCH, Weiheim, 2008.
    39. J. M. Yang, Y. T. Hsieh, T. T. Chu-Tien and I W. Sun, Journal of The Electrochemical Society, 2011, 158, D235-D239.
    40. A. J. Bard and L. R. Faulkner, Electrochemical Methode:Fundamentals and Applications(2nd ed.), Jonh Wiley&Sons, New York, 2001.
    41. R. Greef, R. Peat, L. M. Peter, D. Pletcher and J. Robinson, Instrumental Methods in Electrochemistry, John Wiely & Sons, New Yourk, 1985.
    42. D. Pletcher, A First Course in Electrode Processes, The Electrochemical Consultancy, England, 1991.
    43. G. Gunawardena, G. Hills, I. Montenegro and B. Scharifker, Journal of Electroanalytical Chemistry, 1982, 138, 225-239.
    44. P. Allongue and E. Souteyrand, Journal of Electroanalytical Chemistry, 1990, 286, 217-237.
    45. G. Trejo, R. O. B. and Y. M. V., J. Electrochem. Soc., 1998, 145, 4090-4097.
    46. T. G, G. AF and G. I, Journal of Applied Electrochemistry, 1996, 26, 1287-1294.
    47. Y. F. Lin and I W. Sun, Journal of The Electrochemical Society, 1999, 146, 1054-1059.
    48. C. L. Hussey and X. Xu, J. Electrochem. Soc., 1991, 138, 1886-1890.
    49. M. Avrami, J. Chem. Phys., 1939, 7, 1103-1112.
    50. B. Scharifker and G. Hills, Electrochimica acta 1983, 28, 879-889
    51. J. R. Sanders, The University of Mississippi, 1987.
    52. P. A. Z. Suarez, J. E. L. Dullius, S. Einloft, R. F. D. Souza and J. Dupont, Polyhedron, 1996, 15, 1217-1219.
    53. G. Trejo, R. O. B., Y. M. V., P. Ozil, E. Chainet and B. Nguyen, J. Electrochem. Soc., 1998, 145, 4090-4097.
    54. H. Y. Hsu and C. C. Yang, Zeitschrift für Naturforschung B, 2003, 58b, 1055 – 1062.

    下載圖示 校內:2013-07-29公開
    校外:2013-07-29公開
    QR CODE