| 研究生: |
郭大銓 Kuo, Ta-Chuan |
|---|---|
| 論文名稱: |
微波合成二氧化鈦奈米晶體在染料敏化太陽能電池之應用 Microwave-assisted Synthesis of Nanocrystalline TiO2 for Dye-sensitized Solar Cells |
| 指導教授: |
郭宗枋
Guo, Tzung-Fang |
| 共同指導教授: |
陳昭宇
Chen, Peter |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程研究所 Institute of Electro-Optical Science and Engineering |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 122 |
| 中文關鍵詞: | 微波合成 、二氧化鈦 、染料敏化太陽能電池 |
| 外文關鍵詞: | Microwave-assisted, TiO2, Dye-sensitized Solar Cells |
| 相關次數: | 點閱:85 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主要目的為利用微波合成法取代傳統水熱法製備二氧化鈦並應用於染料敏化太陽能電池(Dye-sensitized Solar Cells, DSCs)以及研究有機溶劑做為溶劑合成二氧化鈦。本研究第一部分為以水為溶劑合成TiO2,並以微波合成法取代傳統水熱合成加熱;再以不同酸做為分散劑,探討其分散行為對DSCs光電轉換效率之影響;而利用醋酸分散二氧化鈦在400 nm~700 nm之間會有散射行為,使其最高轉換效率可達到6.31 %,與市售二氧化鈦轉換效率幾乎相同,但製程時間可大幅地縮短。第二部分則是以有機溶劑做為合成介質,取微波合成所得參數,如微波合成時間、功率以及溫度等等做關聯探討,並利用材料分析找出最佳表面結構,而得到最佳的表面形態為以20 nm的TiO2顆粒呈一方向性成長為長3 μm及寬300 nm的二氧化鈦管,其表面形態具有顆粒特性以及二氧化鈦管的傳導電子特性,未來將可應用於DSCs。
The main purposes of this study are replacing conventional hydro-thermal method by microwave heating and using water or organic solvent as reaction medium to rapidly synthesize TiO2.In the first part, we use water as the solvent and (Titanium tetraisopropoxide, TTIP) as the precursor for hydrolysis. The solution is subsequently processed with microwave heating for crystal growth. The reaction time could be shortened into few minutes. Then we chose different acids as dispersion agents to prepare TiO2 paste for investigating the effects of dispersion on the power conversion efficiency of Dye-Sensitized Solar Cells(DSCs). The optical characterization results revealed that the TiO2 thin film using acetic acid as the dispersion agent has higher scattering power in the region of 400 nm~700 nm. The photovoltaic performance of the microwave-assisted synthesized TiO2 achieved power conversion efficiency of 6.31%. This PEC value is compatible with that of the devices made from commercial TiO2. In the second part, we utilized the organic solvent into the experiment, and studied the parameters of synthesis process, such as time、power and temperature. We observed that under specific synthesis condition can get the TiO2 tube(3 μm × 300 nm) which was composed by the TiO2 nanoparticle(20 nm), the morphology of TiO2 tube showed both particle and tube characteristics. We propose that this TiO2 tube could be used into DSCs in the future.
1. D. Kuang, C. Klein, S. Ito, J. E. Moser, R. Humphry-Baker, N. Evans, F. Duriaux, C. Grätzel, S. M. Zakeeruddin and M. Grätzel, Advanced Materials, 2007, 19, 1133-1137.
2. 莊家琛, 太陽能工程 全華, 1997.
3. B. O'Rgan and M. Grätzel, Nature, 1991, 353, 737-740.
4. 顧鴻濤, 太陽能電池 全威圖書, 2009.
5. National Renewable Energy Laboratory, NREL.
6. 黃建昇, 工業材料雜誌, 2003, 203, 150-161.
7. D. Kearns and M. Calvin, The Journal of Chemical Physics, 1958, 29, 950-951.
8. W. Ma, C. Yang, X. Gong, K. Lee and A. J. Heeger, Advanced Functional Materials, 2005, 15, 1617-1622.
9. A. J. Nozik, Annual Review of Physical Chemistry, 1978, 29, 189-222.
10. F. Hurd and R. Livingston, The Journal of Physical Chemistry, 1940, 44, 865-873.
11. S. Chaberek and R. J. Allen, The Journal of Physical Chemistry, 1965, 69, 647-656.
12. D. R. Kearns, R. A. Hollins, A. U. Khan and P. Radlick, Journal of the American Chemical Society, 1967, 89, 5456-5457.
13. H. Tsubomura, M. Matsumura, Y. Nomura and T. Amamiya, Nature, 1976, 261, 402-403.
14. M. Grätzel, Inorganic Chemistry, 2005, 44, 6841-6851.
15. Z. S. Wang, M. Yanagida, K. Sayama and H. Sugihara, Chemistry of Materials, 2006, 18, 2912-2916.
16. C. J. Barbé, F. Arendse, P. Comte, M. Jirousek, F. Lenzmann, V. Shklover and M. Grätzel, Journal of the American Ceramic Society, 1997, 80, 3157-3171.
17. S. Ito, S. M. Zakeeruddin, R. Humphry-Baker, P. Liska, R. Charvet, P. Comte, M. K. Nazeeruddin, P. Péchy, M. Takata, H. Miura, S. Uchida and M. Grätzel, Advanced Materials, 2006, 18, 1202-1205.
18. S. Ito, M. K. Nazeeruddin, S. M. Zakeeruddin, P. Péchy, P. Comte, M. Grätzel, T. Mizuno, A. Tanaka and T. Koyanagi, International Journal of Photoenergy, 2009, 2009, 1-8.
19. S. Ito, T. N. Murakami, P. Comte, P. Liska, C. Grätzel, M. K. Nazeeruddin and M. Grätzel, Thin Solid Films, 2008, 516, 4613-4619.
20. D. M. P. Mingos and D. R. Baghurst, Chemical Society Reviews, 1991, 20, 1-47.
21. D. M. P. Mingos and D. R. Baghurst, British Ceramic Transaction Journal, 1992, 91.124-127
22. D. Mingos, Research on Chemical Intermediates, 1994, 20, 85-91.
23. K. Rao and P. Ramesh, Bulletin of Materials Science, 1995, 18, 447-465.
24. M. Grätzel, Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2003, 4, 145-153.
25. M. Okuya, K. Nakade, D. Osa, T. Nakano, G. R. Asoka Kumara and S. Kaneko, Journal of Photochemistry and Photobiology A: Chemistry, 2004, 164, 167-172.
26. H. H. Ou and S.-L. Lo, Separation and Purification Technology, 2007, 58, 179-191.
27. D. Pan, N. Zhao, Q. Wang, S. Jiang, X. Ji and L. An, Advanced Materials, 2005, 17, 1991-1995.
28. N. G. Park, G. Schlichthörl, J. van de Lagemaat, H. M. Cheong, A. Mascarenhas and A. J. Frank, The Journal of Physical Chemistry B, 1999, 103, 3308-3314.
29. M. Adachi, Y. Murata, J. Takao, J. Jiu, M. Sakamoto and F. Wang, Journal of the American Chemical Society, 2004, 126, 14943-14949.
30. Z. S. Wang, H. Kawauchi, T. Kashima and H. Arakawa, Coordination Chemistry Reviews, 2004, 248, 1381-1389.
31. T. Watanabe, H. Hayashi and H. Imai, Solar Energy Materials and Solar Cells, 2006, 90, 640-648.
32. R. Sastrawan, J. Beier, U. Belledin, S. Hemming, A. Hinsch, R. Kern, C. Vetter, F. M. Petrat, A. Prodi-Schwab, P. Lechner and W. Hoffmann, Solar Energy Materials and Solar Cells, 2006, 90, 1680-1691.
33. W.-J. Lee, H. Okada, A. Wakahara and A. Yoshida, Ceramics International, 2006, 32, 495-498.
34. M. Matsui, Y. Hashimoto, K. Funabiki, J. Y. Jin, T. Yoshida and H. Minoura, Synthetic Metals, 2005, 148, 147-153.
35. K. Keis, E. Magnusson, H. Lindström, S. E. Lindquist and A. Hagfeldt, Solar Energy Materials and Solar Cells, 2002, 73, 51-58.
36. G. Redmond, D. Fitzmaurice and M. Grätzel, Chemistry of Materials, 1994, 6, 686-691.
37. S. Ferrere, A. Zaban and B. A. Gregg, The Journal of Physical Chemistry B, 1997, 101, 4490-4493.
38. A. Turkovic and Z. Cmjak Orel, Solar Energy Materials and Solar Cells, 1997, 45, 275-281.
39. M. Grätzel, Accounts of Chemical Research, 2009, 42, 1788-1798.
40. M. K. Nazeeruddin, R. Humphry-Baker, P. Liska and M. Grätzel, The Journal of Physical Chemistry B, 2003, 107, 8981-8987.
41. C. Pérez León, L. Kador, B. Peng and M. Thelakkat, The Journal of Physical Chemistry B, 2006, 110, 8723-8730.
42. A. Mishra, M. K. R. Fischer and P. Bäuerle, Angewandte Chemie International Edition, 2009, 48, 2474-2499.
43. N. Robertson, Angewandte Chemie International Edition, 2006, 45, 2338-2345.
44. Y. Lu, D. j. Choi, J. Nelson, O. B. Yang and B. A. Parkinson, Journal of The Electrochemical Society, 2006, 153, 131-137.
45. U. Bach and D. Lupo, Nature, 1998, 395, 583-585.
46. B. O'Regan and D. T. Schwartz, Journal of Applied Physics, 1996, 80, 4749-4754.
47. B. O'Regan, D. T. Schwartz, S. M. Zakeeruddin and M. Grätzel, Advanced Materials, 2000, 12, 1263-1267.
48. M. Grätzel, Nature, 2001, 414, 338-344.
49. P. Wang, S. M. Zakeeruddin, I. Exnar and M. Grätzel, Chemical Communications, 2002, 2972-2973.
50. Y. Liu, A. Hagfeldt, X. R. Xiao and S. E. Lindquist, Solar Energy Materials and Solar Cells, 1998, 55, 267-281.
51. K. Hara, T. Horiguchi, T. Kinoshita, K. Sayama and H. Arakawa, Solar Energy Materials and Solar Cells, 2001, 70, 151-161.
52. X. Fang, T. Ma, G. Guan, M. Akiyama, T. Kida and E. Abe, Journal of Electroanalytical Chemistry, 2004, 570, 257-263.
53. A. Kay and M. Grätzel, Solar Energy Materials and Solar Cells, 1996, 44, 99-117.
54. T. W. Hamann, R. A. Jensen, A. B. F. Martinson, H. Van Ryswyk and J. T. Hupp, Energy & Environmental Science, 2008, 1, 66-78.
55. G. P. Smestad and M. Grätzel, Journal of Chemical Education, 1998, 75, 752-756.
56. L. M. Peter, Physical Chemistry Chemical Physics, 2007, 9, 2630-2642.
57. A. C. Fisher, L. M. Peter, E. A. Ponomarev, A. B. Walker and K. G. U. Wijayantha, The Journal of Physical Chemistry B, 2000, 104, 949-958.
58. G. Schlichthörl, S. Y. Huang, J. Sprague and A. J. Frank, The Journal of Physical Chemistry B, 1997, 101, 8141-8155.
59. N. Kopidakis, E. A. Schiff, N. G. Park, J. van de Lagemaat and A. J. Frank, The Journal of Physical Chemistry B, 2000, 104, 3930-3936.
60. S. Nakade, Y. Saito, W. Kubo, T. Kitamura, Y. Wada and S. Yanagida, The Journal of Physical Chemistry B, 2003, 107, 8607-8611.
61. S. Nakade, Y. Saito, W. Kubo, T. Kanzaki, T. Kitamura, Y. Wada and S. Yanagida, Electrochemistry Communications, 2003, 5, 804-808.
62. Z. Zhang, B. Zhou, W. Ge, B. Xiong, Q. Zheng and W. Cai, Chinese Science Bulletin, 2005, 50, 2408-2412.
63. F. Cao, G. Oskam, G. J. Meyer and P. C. Searson, The Journal of Physical Chemistry, 1996, 100, 17021-17027.
64. S. Nakade, M. Matsuda, S. Kambe, Y. Saito, T. Kitamura, T. Sakata, Y. Wada, H. Mori and S. Yanagida, The Journal of Physical Chemistry B, 2002, 106, 10004-10010.
65. N. G. Park, J. van de Lagemaat and A. J. Frank, The Journal of Physical Chemistry B, 2000, 104, 8989-8994.
66. A. Fujishima and K. Honda, Nature, 1972, 238, 37-38.
67. K.-i. Shimizu, S. Itoh, T. Hatamachi, T. Kodama, M. Sato and K. Toda, Chemistry of Materials, 2005, 17, 5161-5166.
68. W. Ho and J. C. Yu, Journal of Molecular Catalysis A: Chemical, 2006, 247, 268-274.
69. A. Fujishima, T. N. Rao and D. A. Tryk, Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2000, 1, 1-21.
70. D. Jing, Y. Zhang and L. Guo, Chemical Physics Letters, 2005, 415, 74-78.
71. A. Wold, Chemistry of Materials, 1993, 5, 280-284.
72. M. R. Hoffmann, S. T. Martin, W. Choi and D. W. Bahnemann, Chemical Reviews, 1995, 95, 69-96.
73. T. P. Chou, Q. Zhang, B. Russo, G. E. Fryxell and G. Cao, The Journal of Physical Chemistry C, 2007, 111, 6296-6302.
74. A. L. Linsebigler, G. Lu and J. T. Yates, Chemical Reviews, 1995, 95, 735-758.
75. 高廉,奈米光觸媒 五南出版社, 2004.
76. M. Grätzel, Journal of Sol-Gel Science and Technology, 2001, 22, 7-13.
77. Y. Diamant, S. Chappel, S. G. Chen, O. Melamed and A. Zaban, Coordination Chemistry Reviews, 2004, 248, 1271-1276.
78. C. M. Lieber and Z. L. Wang, MRS Bulletin, 2007, 32, 99-108.
79. R. H. Baughman, A. A. Zakhidov and W. A. de Heer, Science, 2002, 297, 787-792.
80. J. Nelson and R. E. Chandler, Coordination Chemistry Reviews, 2004, 248, 1181-1194.
81. J. van de Lagemaat, N. G. Park and A. J. Frank, The Journal of Physical Chemistry B, 2000, 104, 2044-2052.
82. J. Wu, S. Hao, J. Lin, M. Huang, Y. Huang, Z. Lan and P. Li, Crystal Growth & Design, 2008, 8, 247-253.
83. Y. J. Kim, M. H. Lee, H. J. Kim, G. Lim, Y. S. Choi, N. G. Park, K. Kim and W. I. Lee, Advanced Materials, 2009, 21, 3668-3673.
84. H. J. Koo, Y. J. Kim, Y. H. Lee, W. I. Lee, K. Kim and N. G. Park, Advanced Materials, 2008, 20, 195-199.
85. G. Cao, Q. Zhang, Nano Today, 2001, 6, 91-110.
86. M. Law, L. E. Greene, A. Radenovic, T. Kuykendall, J. Liphardt and P. Yang, The Journal of Physical Chemistry B, 2006, 110, 22652-22663.
87. G. J. Wilson, A. S. Matijasevich, D. R. G. Mitchell, J. C. Schulz and G. D. Will, Langmuir, 2006, 22, 2016-2027.
88. K. G. Ayappa, Reviews in Chemical Engineering, 1997, 13, 1-69.
89. F. Wiesbrock, R. Hoogenboom and U. S. Schubert, Macromolecular Rapid Communications, 2004, 26, 1739-1764.
90. R. D. Shannon and J. A. Pask, Journal of the American Ceramic Society, 1965, 48, 391-398.
91. H. Yin, Y. Wada, T. Kitamura, S. Kambe, S. Murasawa, H. Mori, T. Sakata and S. Yanagida, Journal of Materials Chemistry, 2001, 11, 1694-1703.
92. M. Grätzel, MRS Bulletin, 2005, 30, 23-27.
93. J. Yu, Y. Su, B. Cheng and M. Zhou, Journal of Molecular Catalysis A: Chemical, 2006, 258, 104-112.
94. W. M. Campbell, K. W. Jolley, P. Wagner, K. Wagner, P. J. Walsh, K. C. Gordon, L. Schmidt-Mende, M. K. Nazeeruddin, Q. Wang, M. Grätzel and D. L. Officer, The Journal of Physical Chemistry C, 2007, 111, 11760-11762.
95. C. Y. Huang, Y.-C. Hsu, J. G. Chen, V. Suryanarayanan, K. M. Lee and K. C. Ho, Solar Energy Materials and Solar Cells, 2006, 90, 2391-2397.
96. K. Yanagisawa and J. Ovenstone, The Journal of Physical Chemistry B, 1999, 103, 7781-7787.
97. S. D. Burnside, V. Shklover, C. Barbé, P. Comte, F. Arendse, K. Brooks and M. Grätzel, Chemistry of Materials, 1998, 10, 2419-2425.
98. C.-C. Chung, T.-W. Chung and T. C. K. Yang, Industrial & Engineering Chemistry Research, 2008, 47, 2301-2307.
99. N. Pinna and M. Niederberger, Angewandte Chemie International Edition, 2008, 47, 5292-5304.
100. J. H. Xiang, Key Engineering Materials, 2007, 336 - 338, 2337-2339.
101. M. Aizawa, Y. Morikawa, Y. Namai, H. Morikawa and Y. Iwasawa, The Journal of Physical Chemistry B, 2005, 109, 18831-18838.
102. L. N. Lewis, J. L. Spivack, S. Gasaway, E. D. Williams, J. Y. Gui, V. Manivannan and O. P. Siclovan, Solar Energy Materials and Solar Cells, 2006, 90, 1041-1051.
校內:2021-12-30公開