簡易檢索 / 詳目顯示

研究生: 郭大銓
Kuo, Ta-Chuan
論文名稱: 微波合成二氧化鈦奈米晶體在染料敏化太陽能電池之應用
Microwave-assisted Synthesis of Nanocrystalline TiO2 for Dye-sensitized Solar Cells
指導教授: 郭宗枋
Guo, Tzung-Fang
共同指導教授: 陳昭宇
Chen, Peter
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程研究所
Institute of Electro-Optical Science and Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 122
中文關鍵詞: 微波合成二氧化鈦染料敏化太陽能電池
外文關鍵詞: Microwave-assisted, TiO2, Dye-sensitized Solar Cells
相關次數: 點閱:85下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要目的為利用微波合成法取代傳統水熱法製備二氧化鈦並應用於染料敏化太陽能電池(Dye-sensitized Solar Cells, DSCs)以及研究有機溶劑做為溶劑合成二氧化鈦。本研究第一部分為以水為溶劑合成TiO2,並以微波合成法取代傳統水熱合成加熱;再以不同酸做為分散劑,探討其分散行為對DSCs光電轉換效率之影響;而利用醋酸分散二氧化鈦在400 nm~700 nm之間會有散射行為,使其最高轉換效率可達到6.31 %,與市售二氧化鈦轉換效率幾乎相同,但製程時間可大幅地縮短。第二部分則是以有機溶劑做為合成介質,取微波合成所得參數,如微波合成時間、功率以及溫度等等做關聯探討,並利用材料分析找出最佳表面結構,而得到最佳的表面形態為以20 nm的TiO2顆粒呈一方向性成長為長3 μm及寬300 nm的二氧化鈦管,其表面形態具有顆粒特性以及二氧化鈦管的傳導電子特性,未來將可應用於DSCs。

    The main purposes of this study are replacing conventional hydro-thermal method by microwave heating and using water or organic solvent as reaction medium to rapidly synthesize TiO2.In the first part, we use water as the solvent and (Titanium tetraisopropoxide, TTIP) as the precursor for hydrolysis. The solution is subsequently processed with microwave heating for crystal growth. The reaction time could be shortened into few minutes. Then we chose different acids as dispersion agents to prepare TiO2 paste for investigating the effects of dispersion on the power conversion efficiency of Dye-Sensitized Solar Cells(DSCs). The optical characterization results revealed that the TiO2 thin film using acetic acid as the dispersion agent has higher scattering power in the region of 400 nm~700 nm. The photovoltaic performance of the microwave-assisted synthesized TiO2 achieved power conversion efficiency of 6.31%. This PEC value is compatible with that of the devices made from commercial TiO2. In the second part, we utilized the organic solvent into the experiment, and studied the parameters of synthesis process, such as time、power and temperature. We observed that under specific synthesis condition can get the TiO2 tube(3 μm × 300 nm) which was composed by the TiO2 nanoparticle(20 nm), the morphology of TiO2 tube showed both particle and tube characteristics. We propose that this TiO2 tube could be used into DSCs in the future.

    中文摘要 I Abstract III 誌謝 V 目錄 VII 圖目錄 XIII 表目錄 XIX 第一章 緒論 1 1-1 前言 1 1-2 太陽能電池種類簡介 2 1-2-1結晶矽太陽能電池 2 1-2-1-1單結晶矽太陽電池 4 1-2-1-2多晶矽太陽能電池 4 1-2-1-3非晶矽太陽能電池 4 1-2-2薄膜太陽能電池 5 1-2-3有機太陽能電池 5 1-2-3-1小分子有機太陽能電池 5 1-2-3-2高分子有機太陽能電池(Polymer Solar Cells) 6 1-2-3-3染料敏化太陽能電池(Dye-Sensitized Solar Cells, DSCs) 6 1-3 研究動機 8 第二章 文獻回顧 9 2-1 染料敏化太陽能電池 9 2-1-1染料敏化太陽能電池結構 11 2-1-1-1透明導電基板 11 2-1-1-2工作電極 12 2-1-1-3染料 12 2-1-1-4電解液 16 2-1-1-5對電極 17 2-1-2 染料敏化太陽能電池工作原理 17 2-2轉換效率計算及提升效率之方法 19 2-2-1轉換效率計算 19 2-2-2提升效率之方法 20 2-2-3電子在半導體中傳遞過程與再結合逆向反應 22 2-2-4影響效率的因素 23 2-3 二氧化鈦簡介 25 2-3-1二氧化鈦奈米粉體製備與特性 29 2-3-2其他二氧化鈦奈米結構製備與特性 31 2-4以微波合成法合成二氧化鈦 34 2-4-1微波合成介紹 35 2-4-2 Anatase TiO2成長機制 37 2-5 合成環境對於合成二氧化鈦表面形態影響 40 2-5-1 pH值的影響 40 2-5-2溫度的影響 42 2-5-3添加物對於水熱法合成之影響 44 2-5-3微波合成條件的影響 45 2-6結論 47 第三章 實驗方法與分析儀器原理 51 3-1實驗藥品 51 3-2實驗儀器 52 3-3實驗設計與流程 53 3-4微波合成法合成二氧化鈦奈米顆粒 54 3-5染料敏化太陽能電池組裝 58 3-5-1奈米二氧化鈦顆粒paste配製 58 3-5-2製備二氧化鈦光電極薄膜 58 3-5-3浸泡吸附染料光敏化劑 60 3-5-4電解液配製 61 3-5-5對電極製作 61 3-5-6組裝成染料敏化太陽能電池 61 3-6樣品特性分析 62 3-6-1粉末及薄膜結晶結構分析 62 3-6-2表面型態觀察 63 3-6-3微結構分析 64 3-6-4熱重分析儀 64 3-6-5比表面積分析 65 3-6-6同步輻射分析 65 3-6-7光譜量測 66 3-6-8電池效率量測 67 3-6-9 IPCE量測 68 3-7結論 68 第四章 微波合成法製備二氧化鈦及其於光電極的應用 70 4-1水解條件之選擇 71 4-1-1粉末分析 73 4-1-1-1論溫度對二氧化鈦之影響 74 4-1-1-2論合成時間對二氧化鈦形成的影響 77 4-1-2薄膜分析 79 4-1-3元件電性量測 85 4-1-3-1論不同二氧化鈦製備成元件之差異 85 4-1-3-2最佳條件製備 91 4-1-4結論 94 4-2 有機溶劑合成二氧化鈦 96 4-2-1論合成條件的選擇 96 4-2-1-1鍛燒條件的選擇 96 4-2-2論微波時間對表面形態的影響 101 4-2-3論微波溫度的影響及選擇 105 4-2-4論微波功率的影響 108 4-2-5二氧化鈦柱生長機制 109 4-3結論 109 第五章 結論與未來展望 111 第六章 參考文獻 113 自述 121

    1. D. Kuang, C. Klein, S. Ito, J. E. Moser, R. Humphry-Baker, N. Evans, F. Duriaux, C. Grätzel, S. M. Zakeeruddin and M. Grätzel, Advanced Materials, 2007, 19, 1133-1137.
    2. 莊家琛, 太陽能工程 全華, 1997.
    3. B. O'Rgan and M. Grätzel, Nature, 1991, 353, 737-740.
    4. 顧鴻濤, 太陽能電池 全威圖書, 2009.
    5. National Renewable Energy Laboratory, NREL.
    6. 黃建昇, 工業材料雜誌, 2003, 203, 150-161.
    7. D. Kearns and M. Calvin, The Journal of Chemical Physics, 1958, 29, 950-951.
    8. W. Ma, C. Yang, X. Gong, K. Lee and A. J. Heeger, Advanced Functional Materials, 2005, 15, 1617-1622.
    9. A. J. Nozik, Annual Review of Physical Chemistry, 1978, 29, 189-222.
    10. F. Hurd and R. Livingston, The Journal of Physical Chemistry, 1940, 44, 865-873.
    11. S. Chaberek and R. J. Allen, The Journal of Physical Chemistry, 1965, 69, 647-656.
    12. D. R. Kearns, R. A. Hollins, A. U. Khan and P. Radlick, Journal of the American Chemical Society, 1967, 89, 5456-5457.
    13. H. Tsubomura, M. Matsumura, Y. Nomura and T. Amamiya, Nature, 1976, 261, 402-403.
    14. M. Grätzel, Inorganic Chemistry, 2005, 44, 6841-6851.
    15. Z. S. Wang, M. Yanagida, K. Sayama and H. Sugihara, Chemistry of Materials, 2006, 18, 2912-2916.
    16. C. J. Barbé, F. Arendse, P. Comte, M. Jirousek, F. Lenzmann, V. Shklover and M. Grätzel, Journal of the American Ceramic Society, 1997, 80, 3157-3171.
    17. S. Ito, S. M. Zakeeruddin, R. Humphry-Baker, P. Liska, R. Charvet, P. Comte, M. K. Nazeeruddin, P. Péchy, M. Takata, H. Miura, S. Uchida and M. Grätzel, Advanced Materials, 2006, 18, 1202-1205.
    18. S. Ito, M. K. Nazeeruddin, S. M. Zakeeruddin, P. Péchy, P. Comte, M. Grätzel, T. Mizuno, A. Tanaka and T. Koyanagi, International Journal of Photoenergy, 2009, 2009, 1-8.
    19. S. Ito, T. N. Murakami, P. Comte, P. Liska, C. Grätzel, M. K. Nazeeruddin and M. Grätzel, Thin Solid Films, 2008, 516, 4613-4619.
    20. D. M. P. Mingos and D. R. Baghurst, Chemical Society Reviews, 1991, 20, 1-47.
    21. D. M. P. Mingos and D. R. Baghurst, British Ceramic Transaction Journal, 1992, 91.124-127
    22. D. Mingos, Research on Chemical Intermediates, 1994, 20, 85-91.
    23. K. Rao and P. Ramesh, Bulletin of Materials Science, 1995, 18, 447-465.
    24. M. Grätzel, Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2003, 4, 145-153.
    25. M. Okuya, K. Nakade, D. Osa, T. Nakano, G. R. Asoka Kumara and S. Kaneko, Journal of Photochemistry and Photobiology A: Chemistry, 2004, 164, 167-172.
    26. H. H. Ou and S.-L. Lo, Separation and Purification Technology, 2007, 58, 179-191.
    27. D. Pan, N. Zhao, Q. Wang, S. Jiang, X. Ji and L. An, Advanced Materials, 2005, 17, 1991-1995.
    28. N. G. Park, G. Schlichthörl, J. van de Lagemaat, H. M. Cheong, A. Mascarenhas and A. J. Frank, The Journal of Physical Chemistry B, 1999, 103, 3308-3314.
    29. M. Adachi, Y. Murata, J. Takao, J. Jiu, M. Sakamoto and F. Wang, Journal of the American Chemical Society, 2004, 126, 14943-14949.
    30. Z. S. Wang, H. Kawauchi, T. Kashima and H. Arakawa, Coordination Chemistry Reviews, 2004, 248, 1381-1389.
    31. T. Watanabe, H. Hayashi and H. Imai, Solar Energy Materials and Solar Cells, 2006, 90, 640-648.
    32. R. Sastrawan, J. Beier, U. Belledin, S. Hemming, A. Hinsch, R. Kern, C. Vetter, F. M. Petrat, A. Prodi-Schwab, P. Lechner and W. Hoffmann, Solar Energy Materials and Solar Cells, 2006, 90, 1680-1691.
    33. W.-J. Lee, H. Okada, A. Wakahara and A. Yoshida, Ceramics International, 2006, 32, 495-498.
    34. M. Matsui, Y. Hashimoto, K. Funabiki, J. Y. Jin, T. Yoshida and H. Minoura, Synthetic Metals, 2005, 148, 147-153.
    35. K. Keis, E. Magnusson, H. Lindström, S. E. Lindquist and A. Hagfeldt, Solar Energy Materials and Solar Cells, 2002, 73, 51-58.
    36. G. Redmond, D. Fitzmaurice and M. Grätzel, Chemistry of Materials, 1994, 6, 686-691.
    37. S. Ferrere, A. Zaban and B. A. Gregg, The Journal of Physical Chemistry B, 1997, 101, 4490-4493.
    38. A. Turkovic and Z. Cmjak Orel, Solar Energy Materials and Solar Cells, 1997, 45, 275-281.
    39. M. Grätzel, Accounts of Chemical Research, 2009, 42, 1788-1798.
    40. M. K. Nazeeruddin, R. Humphry-Baker, P. Liska and M. Grätzel, The Journal of Physical Chemistry B, 2003, 107, 8981-8987.
    41. C. Pérez León, L. Kador, B. Peng and M. Thelakkat, The Journal of Physical Chemistry B, 2006, 110, 8723-8730.
    42. A. Mishra, M. K. R. Fischer and P. Bäuerle, Angewandte Chemie International Edition, 2009, 48, 2474-2499.
    43. N. Robertson, Angewandte Chemie International Edition, 2006, 45, 2338-2345.
    44. Y. Lu, D. j. Choi, J. Nelson, O. B. Yang and B. A. Parkinson, Journal of The Electrochemical Society, 2006, 153, 131-137.
    45. U. Bach and D. Lupo, Nature, 1998, 395, 583-585.
    46. B. O'Regan and D. T. Schwartz, Journal of Applied Physics, 1996, 80, 4749-4754.
    47. B. O'Regan, D. T. Schwartz, S. M. Zakeeruddin and M. Grätzel, Advanced Materials, 2000, 12, 1263-1267.
    48. M. Grätzel, Nature, 2001, 414, 338-344.
    49. P. Wang, S. M. Zakeeruddin, I. Exnar and M. Grätzel, Chemical Communications, 2002, 2972-2973.
    50. Y. Liu, A. Hagfeldt, X. R. Xiao and S. E. Lindquist, Solar Energy Materials and Solar Cells, 1998, 55, 267-281.
    51. K. Hara, T. Horiguchi, T. Kinoshita, K. Sayama and H. Arakawa, Solar Energy Materials and Solar Cells, 2001, 70, 151-161.
    52. X. Fang, T. Ma, G. Guan, M. Akiyama, T. Kida and E. Abe, Journal of Electroanalytical Chemistry, 2004, 570, 257-263.
    53. A. Kay and M. Grätzel, Solar Energy Materials and Solar Cells, 1996, 44, 99-117.
    54. T. W. Hamann, R. A. Jensen, A. B. F. Martinson, H. Van Ryswyk and J. T. Hupp, Energy & Environmental Science, 2008, 1, 66-78.
    55. G. P. Smestad and M. Grätzel, Journal of Chemical Education, 1998, 75, 752-756.
    56. L. M. Peter, Physical Chemistry Chemical Physics, 2007, 9, 2630-2642.
    57. A. C. Fisher, L. M. Peter, E. A. Ponomarev, A. B. Walker and K. G. U. Wijayantha, The Journal of Physical Chemistry B, 2000, 104, 949-958.
    58. G. Schlichthörl, S. Y. Huang, J. Sprague and A. J. Frank, The Journal of Physical Chemistry B, 1997, 101, 8141-8155.
    59. N. Kopidakis, E. A. Schiff, N. G. Park, J. van de Lagemaat and A. J. Frank, The Journal of Physical Chemistry B, 2000, 104, 3930-3936.
    60. S. Nakade, Y. Saito, W. Kubo, T. Kitamura, Y. Wada and S. Yanagida, The Journal of Physical Chemistry B, 2003, 107, 8607-8611.
    61. S. Nakade, Y. Saito, W. Kubo, T. Kanzaki, T. Kitamura, Y. Wada and S. Yanagida, Electrochemistry Communications, 2003, 5, 804-808.
    62. Z. Zhang, B. Zhou, W. Ge, B. Xiong, Q. Zheng and W. Cai, Chinese Science Bulletin, 2005, 50, 2408-2412.
    63. F. Cao, G. Oskam, G. J. Meyer and P. C. Searson, The Journal of Physical Chemistry, 1996, 100, 17021-17027.
    64. S. Nakade, M. Matsuda, S. Kambe, Y. Saito, T. Kitamura, T. Sakata, Y. Wada, H. Mori and S. Yanagida, The Journal of Physical Chemistry B, 2002, 106, 10004-10010.
    65. N. G. Park, J. van de Lagemaat and A. J. Frank, The Journal of Physical Chemistry B, 2000, 104, 8989-8994.
    66. A. Fujishima and K. Honda, Nature, 1972, 238, 37-38.
    67. K.-i. Shimizu, S. Itoh, T. Hatamachi, T. Kodama, M. Sato and K. Toda, Chemistry of Materials, 2005, 17, 5161-5166.
    68. W. Ho and J. C. Yu, Journal of Molecular Catalysis A: Chemical, 2006, 247, 268-274.
    69. A. Fujishima, T. N. Rao and D. A. Tryk, Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2000, 1, 1-21.
    70. D. Jing, Y. Zhang and L. Guo, Chemical Physics Letters, 2005, 415, 74-78.
    71. A. Wold, Chemistry of Materials, 1993, 5, 280-284.
    72. M. R. Hoffmann, S. T. Martin, W. Choi and D. W. Bahnemann, Chemical Reviews, 1995, 95, 69-96.
    73. T. P. Chou, Q. Zhang, B. Russo, G. E. Fryxell and G. Cao, The Journal of Physical Chemistry C, 2007, 111, 6296-6302.
    74. A. L. Linsebigler, G. Lu and J. T. Yates, Chemical Reviews, 1995, 95, 735-758.
    75. 高廉,奈米光觸媒 五南出版社, 2004.
    76. M. Grätzel, Journal of Sol-Gel Science and Technology, 2001, 22, 7-13.
    77. Y. Diamant, S. Chappel, S. G. Chen, O. Melamed and A. Zaban, Coordination Chemistry Reviews, 2004, 248, 1271-1276.
    78. C. M. Lieber and Z. L. Wang, MRS Bulletin, 2007, 32, 99-108.
    79. R. H. Baughman, A. A. Zakhidov and W. A. de Heer, Science, 2002, 297, 787-792.
    80. J. Nelson and R. E. Chandler, Coordination Chemistry Reviews, 2004, 248, 1181-1194.
    81. J. van de Lagemaat, N. G. Park and A. J. Frank, The Journal of Physical Chemistry B, 2000, 104, 2044-2052.
    82. J. Wu, S. Hao, J. Lin, M. Huang, Y. Huang, Z. Lan and P. Li, Crystal Growth & Design, 2008, 8, 247-253.
    83. Y. J. Kim, M. H. Lee, H. J. Kim, G. Lim, Y. S. Choi, N. G. Park, K. Kim and W. I. Lee, Advanced Materials, 2009, 21, 3668-3673.
    84. H. J. Koo, Y. J. Kim, Y. H. Lee, W. I. Lee, K. Kim and N. G. Park, Advanced Materials, 2008, 20, 195-199.
    85. G. Cao, Q. Zhang, Nano Today, 2001, 6, 91-110.
    86. M. Law, L. E. Greene, A. Radenovic, T. Kuykendall, J. Liphardt and P. Yang, The Journal of Physical Chemistry B, 2006, 110, 22652-22663.
    87. G. J. Wilson, A. S. Matijasevich, D. R. G. Mitchell, J. C. Schulz and G. D. Will, Langmuir, 2006, 22, 2016-2027.
    88. K. G. Ayappa, Reviews in Chemical Engineering, 1997, 13, 1-69.
    89. F. Wiesbrock, R. Hoogenboom and U. S. Schubert, Macromolecular Rapid Communications, 2004, 26, 1739-1764.
    90. R. D. Shannon and J. A. Pask, Journal of the American Ceramic Society, 1965, 48, 391-398.
    91. H. Yin, Y. Wada, T. Kitamura, S. Kambe, S. Murasawa, H. Mori, T. Sakata and S. Yanagida, Journal of Materials Chemistry, 2001, 11, 1694-1703.
    92. M. Grätzel, MRS Bulletin, 2005, 30, 23-27.
    93. J. Yu, Y. Su, B. Cheng and M. Zhou, Journal of Molecular Catalysis A: Chemical, 2006, 258, 104-112.
    94. W. M. Campbell, K. W. Jolley, P. Wagner, K. Wagner, P. J. Walsh, K. C. Gordon, L. Schmidt-Mende, M. K. Nazeeruddin, Q. Wang, M. Grätzel and D. L. Officer, The Journal of Physical Chemistry C, 2007, 111, 11760-11762.
    95. C. Y. Huang, Y.-C. Hsu, J. G. Chen, V. Suryanarayanan, K. M. Lee and K. C. Ho, Solar Energy Materials and Solar Cells, 2006, 90, 2391-2397.
    96. K. Yanagisawa and J. Ovenstone, The Journal of Physical Chemistry B, 1999, 103, 7781-7787.
    97. S. D. Burnside, V. Shklover, C. Barbé, P. Comte, F. Arendse, K. Brooks and M. Grätzel, Chemistry of Materials, 1998, 10, 2419-2425.
    98. C.-C. Chung, T.-W. Chung and T. C. K. Yang, Industrial & Engineering Chemistry Research, 2008, 47, 2301-2307.
    99. N. Pinna and M. Niederberger, Angewandte Chemie International Edition, 2008, 47, 5292-5304.
    100. J. H. Xiang, Key Engineering Materials, 2007, 336 - 338, 2337-2339.
    101. M. Aizawa, Y. Morikawa, Y. Namai, H. Morikawa and Y. Iwasawa, The Journal of Physical Chemistry B, 2005, 109, 18831-18838.
    102. L. N. Lewis, J. L. Spivack, S. Gasaway, E. D. Williams, J. Y. Gui, V. Manivannan and O. P. Siclovan, Solar Energy Materials and Solar Cells, 2006, 90, 1041-1051.

    無法下載圖示 校內:2021-12-30公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE