| 研究生: |
呂孟哲 Lu, Meng-Zhe |
|---|---|
| 論文名稱: |
偵測多變量非線性輪廓資料製程改變之研究 Detecting the Process Changes for Multivariate Nonlinear Profile Data |
| 指導教授: |
潘浙楠
Pan, Jeh-Nan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 統計學系 Department of Statistics |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 45 |
| 中文關鍵詞: | 多變量非線性輪廓資料 、空間排序指數加權移動平均管制圖 、支持向量迴歸 、平均絕對偏差 、共同固定設計 |
| 外文關鍵詞: | Multivariate nonlinear profile data, Spatial rank exponential weighted moving average (SREWMA) control chart, Support vector regression (SVR), Mean absolute deviation (MAD), Common fixed design (CFD) |
| 相關次數: | 點閱:180 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
統計製程管制 (Statistical Process Control, SPC) 是監控與改善產品及製程品質的重要方法。現今高科技產業的統計製程管制中,我們常需要針對兩個或多個相關品質特性進行監控;例如半導體製造、印刷電路板及航太工業等許多工業領域之製程,皆屬多變量品質特性之範疇。若這些多變量品質特性以一個或多個解釋變數的函數關係式來表達,則稱之為多變量輪廓資料。由於我們通常無法事先知道其函數關係式,且實際資料往往亦不服從多變量常態分配。故本研究擬透過無母數迴歸模型描述輪廓資料的函數關係,並提出多變量非線性輪廓資料的監控方法。
我們首先藉由支持向量迴歸 (Support Vector Regression, SVR) 模型對輪廓資料進行模型配適,取得參考剖面 (Reference Profile)後,再計算觀測值與參考剖面間的平均絕對偏差作為其測度 (Metric),並結合測度與SREWMA (Spatial Rank Exponential Weighted Moving Average) 提出RSREWMA (Revised Spatial Rank Exponential Weighted Moving Average) 管制圖作為第二階段不滿足共同固定設計 (Common Fixed Design, CFD) 的條件下多變量非線性輪廓資料監控的依據。接著針對製程產生偏移的各種狀況進行統計模擬,並以平均連串長度 (Average Run Length, ARL) 作為管制圖偵測能力的評估標準。最後,我們透過一組多變量非線性輪廓資料做數值實例的驗證與說明。
The SPC control charts play an important role in monitoring and improving the product and process quality. Two or more correlated quality characteristics are often required for monitoring the product and process quality in today’s high-technology industries, such as semiconductor manufacturing, printed circuit board and aerospace, etc. If the multivariate quality characteristics are assumed to be represented by functions of one or more explanatory variables, they are usually referred to as a multivariate profile data. Generally speaking, the functional relationships of the multivariate nonlinear profile data can’t be known in advance and the real data usually don’t follow a multivariate normal distribution. Thus, in this research, the functional relationships of multivariate nonlinear profile data is described via a non-parametric regression model. We first fit the multivariate nonlinear profile data and obtain the reference profiles through support vector regression (SVR) model. The differences between the observed multivariate nonlinear profiles and the reference profiles are used to calculate the vector of metrics. Then, a non-parametric revised spatial rank exponential weighted moving average (RSREWMA) control chart is proposed in the Phase II monitoring.
Moreover, a simulation study is conducted to evaluate the detecting performance of our proposed non-parametric RSREWMA control chart under various process shifts using out-of-control average run length (ARL_1). The simulation results indicate that the SREWMA control chart coupled with the metric of mean absolute deviation (MAD) can be used to monitor the multivariate nonlinear profile data when a common fixed design (CFD) is not applicable in Phase II study. Finally, a realistic multivariate nonlinear profile example is used to demonstrate the usefulness of our proposed RSREWMA control chart and its monitoring schemes.
1. Alwee, R., Shamsuddin, H., Mariyam, S., & Sallehuddin, R. (2013). Hybrid support vector regression and autoregressive integrated moving average models improved by particle swarm optimization for property crime rates forecasting with economic indicators. The Scientific World Journal, 2013.
2. Amiri, A., Jensen, W. A., & Kazemzadeh, R. B. (2010). A case study on monitoring polynomial profiles in the automotive industry. Quality and Reliability Engineering International, 26(5), 509-520.
3. Chen, P. W., Peng, W. S., Cheng, C. S., & Wang, Y. T. (2017). Monitoring of nonlinear profile variations using support vector machines. Journal of Quality, 24(5), 313-323.
4. Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine learning, 20(3), 273-297.
5. Eyvazian, M., Noorossana, R., Saghaei, A., & Amiri, A. (2011). Phase II monitoring of multivariate multiple linear regression profiles. Quality and Reliability Engineering International, 27(3), 281-296.
6. Fletcher, R. (2013). Practical methods of optimization. John Wiley & Sons.
7. Ghashghaei, R., Amiri, A., & Khosravi, P. (2018). New control charts for simultaneous monitoring of the mean vector and covariance matrix of multivariate multiple linear profiles. Communications in Statistics-Simulation and Computation, 1-24.
8. Guevara, R. D., & Vargas, J. A. (2016). Evaluation of process capability in multivariate nonlinear profiles. Journal of Statistical Computation and Simulation, 86(12), 2411-2428.
9. Gupta, S., Montgomery, D., & Woodall, W. (2006). Performance evaluation of two methods for online monitoring of linear calibration profiles. International Journal of Production Research, 44(10), 1927-1942.
10. Hosking, J. R. (1980). The multivariate portmanteau statistic. Journal of the American Statistical Association, 75(371), 602-608.
11. Hung, Y. C., Tsai, W. C., Yang, S. F., Chuang, S. C., & Tseng, Y. K. (2012). Nonparametric profile monitoring in multi-dimensional data spaces. Journal of Process Control, 22(2), 397-403.
12. Kang, L., & Albin, S. L. (2000). On-line monitoring when the process yields a linear profile. Journal of Quality Technology, 32(4), 418-426.
13. Kim, K., Mahmoud, M. A., & Woodall, W. H. (2003). On the monitoring of linear profiles. Journal of Quality Technology, 35(3), 317-328.
14. Lee, H. T., Huang, J. Y., & Cheng, C. S. (2015). The Monitoring of nonlinear profiles using smoothing spline and decision tree model. Journal of Quality, 22(2), 77-87.
15. Mahmoud, M. A., & Woodall, W. H. (2004). Phase I analysis of linear profiles with calibration applications. Technometrics, 46(4), 380-391.
16. Meyer, D., Dimitriadou, E., Hornik, K., Weingessel, A., & Leisch, F. (2015). e1071: Misc Functions of the Department of Statistics, Probability Theory Group (Formerly: E1071), TU Wien, 2015. R package version, 1-6.
17. Moguerza, J. M., Munoz, A., & Psarakis, S. (2007). Monitoring nonlinear profiles using support vector machines. Lecture Notes in Computer Science, 4756, 574-583.
18. Noorossana, R., Eyvazian, M., & Vaghefi, A. (2010). Phase II monitoring of multivariate simple linear profiles. Computers & Industrial Engineering, 58(4), 563-570.
19. Pan, J. N., Li, C. I. & Liao, C. H. (2018). Detecting the Process Change for Nonlinear Profile Data Using Support Vector Regression Method. Accepted by Quality and Reliability Engineering International.
20. Smola, A. J., & Schölkopf, B. (2004). A tutorial on support vector regression. Statistics and Computing, 14(3), 199-222.
21. Soleimani, P., Noorossana, R., & Amiri, A. (2009). Simple linear profiles monitoring in the presence of within profile autocorrelation. Computers & Industrial Engineering, 57(3), 1015-1021.
22. Soleimani, P., Noorossana, R., & Niaki, S. T. A. (2013). Monitoring autocorrelated multivariate simple linear profiles. The International Journal of Advanced Manufacturing Technology, 67(5-8), 1857-1865.
23. Steiner, S., Jensen, W. A., Grimshaw, S. D., & Espen, B. (2016). Nonlinear Profile Monitoring for Oven-Temperature Data. Journal of Quality Technology, 48(1), 84-97.
24. Urbanek, S. (2011). multicore: Parallel processing of R code on machines with multiple cores or CPUs. R package (v: 0.1-7), URL https://cran. r-project. org/package= multicore.
25. Vaghefi, A., Tajbakhsh, S. D., & Noorossana, R. (2009). Phase II monitoring of nonlinear profiles. Communications in Statistics—Theory and Methods, 38(11), 1834-1851.
26. Vapnik V. (1995). The Nature of Statistical Learning Theory. Springer, New York.
27. Vapnik V., Golowich S., and Smola A. (1997). Support vector method for function approximation, regression estimation, and signal processing. In: Mozer M.C., Jordan M.I., and Petsche T. (Eds.) Advances in Neural Information Processing Systems 9, MA, MIT Press, Cambridge. pp. 281–287.
28. Walker, E., & Wright, S. P. (2002). Comparing curves using additive models. Journal of Quality Technology, 34(1), 118-129.
29. Williams, J. D., Woodall, W. H., & Birch, J. B. (2007). Statistical monitoring of nonlinear product and process quality profiles. Quality and Reliability Engineering International, 23(8), 925-941.
30. Woodall, W. H. (2007). Current research on profile monitoring. Production, 17(3), 420-425.
31. Woodall, W. H., Spitzner, D. J., Montgomery, D. C., & Gupta, S. (2004). Using control charts to monitor process and product quality profiles. Journal of Quality Technology, 36(3), 309-320.
32. Wu, I. L., Lee, H. T., & Cheng, C. S. (2014). Application of support vector regression in monitoring process and product profiles. Journal of Quality, 21(3), 189-203.
33. Zou, C., Tsung, F., & Wang, Z. (2007). Monitoring general linear profiles using multivariate exponentially weighted moving average schemes. Technometrics, 49(4), 395-408.
34. Zou, C., Tsung, F., & Wang, Z. (2008). Monitoring profiles based on nonparametric regression methods. Technometrics, 50(4), 512-526.
35. Zou, C., Wang, Z., & Tsung, F. (2012). A spatial rank‐based multivariate EWMA control chart. Naval Research Logistics (NRL), 59(2), 91-110.