簡易檢索 / 詳目顯示

研究生: 洪士淮
Hung, Shih-Huai
論文名稱: 利用電場調制光譜研究駢苯衍生物(PTCDI-CnH2n+1)之激子行為
The exciton behavior of PTCDI thin films studied by electric field modulation spectroscopy
指導教授: 周維揚
Chou, Wei-Yang
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 59
中文關鍵詞: 電場調制光譜駢苯衍生物激子
外文關鍵詞: electro-modulation spectroscopy, CER, PTCDI, exciton
相關次數: 點閱:86下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文的研究主要分為三個部分,第一部分利用溶液吸收光譜與薄膜吸收光譜來驗證有機分子PTCDI的電子耦合現象,第二部分為利用電場調制光譜觀察PTCDI-C_3 H_7與PTCDI-C_13 H_27的能階分布差異,藉以推測出激子的能階位置,第三部分則利用X光繞射光譜分析PTCDI-C_3 H_7與PTCDI-C_13 H_27薄膜結構對激子的影響。
    藉由溶液吸收光譜與薄膜吸收光譜的比較,我們觀察到PTCDI-C_13 H_27從單一分子形成薄膜的過程,吸收峰值有紅移的現象,此外,在2.18eV附近,薄膜吸收光譜比溶液吸收光譜多了由 π 電子軌域互相耦合形成的 π 共軛鍵。在電場調制光譜與薄膜吸收光譜的比較下,我們可以觀察到PTCDI-C_3 H_7與PTCDI-C_13 H_27的能階差異,藉而推測出激子的存在,而此現象無法由薄膜吸收光譜觀察到。最後,從X光繞射光譜的分析,我們發現PTCDI-C_3 H_7與PTCDI-C_13 H_27在結晶結構上對激子傳輸的影響。

    Room-temperature contactless electroreflectance (CER) was used to investigate the optical properties of a N,N’-didecylperylene-3,4,9,10-tetracarboxylic diimide (PTCDI) thin film sandwiched between indium tin oxide and aluminum electrodes (Al/PTCDI/PI/ITO/glass substrate) at ambient. The electro-modulated optical responses of the Al/PTCDI/PI/ITO/glass structures were characterized by various alternating current biases. The energy levels of PTCDI-C_3 H_7 and PTCDI-C_13 H_27 are discussed in terms of the absorption spectrum and electromodulation spectrum.
    A red shift of the absorption peak and π-conjugate bonding for PTCDI-C_13 H_27 are observed in the absorption spectra under thin-film and solvent states. The presence of the exciton peak is inferred by the energy differences between the PTCDI-C_3 H_7 thin-film and the PTCDI-C_13 H_27 thin-film in the electro-modulation spectroscopy and the absorption spectra. At last, the effects of the exciton for charge transfer in the thin-film structures of the PTCDI-C_3 H_7 and the PTCDI-C_13 H_27 can be found by the X-ray diffraction spectrum analyses.

    第一章 緒論 1 1.1 有機半導體簡介 1 1.2 有機材料之發展 3 1.3 研究目的 4 第二章 原理介紹 7 2.1 激子(Exciton) 7 2.2 電子躍遷理論 10 2.3 光學常數 13 2.4 調制光譜(Modulation Spectroscopy) 16 2.5 電場調制光譜(Electromodulation Spectroscopy) 17 2.5.1 電場調制光譜原理 18 第三章 實驗與樣品簡介 24 3.1 駢苯衍生物(PTCDI) 24 3.1.1 PTCDI 有機分子合成 24 3.2 實驗樣品 26 3.2.1 電場調制光譜樣品製作 26 3.2.2 PTCDI溶液吸收光譜樣品製作 27 3.3 電場調制光譜實驗裝置與步驟 28 第四章 實驗結果分析與討論 37 4.1 調制光譜與吸收光譜的比較 37 4.2 電場調制光譜 39 4.2.1. 電場調制光譜譜線擬合討論 39 4.2.2. 電場調制光譜的分析與討論 41 4.3 X光繞射光譜(X-ray diffraction, XRD) 43 第五章 結論與未來研究方向 53 5.1 結論 53 5.2 未來研究方向 54

    [1] H. K. M. Pope and P. Magnantevol, "Electroluminescence in organic crystal," J.Chem. Phys., vol. 38, 1963.
    [2] C. Chiang, C. Fincher, Y. Park, A. Heeger, H. Shirakawa, E. Louis, et al., "Electrical Conductivity in Doped Polyacetylene," Physical Review Letters, vol. 39, pp. 1098-1101, 1977.
    [3] F. Ebisawa, T. Kurokawa, and S. Nara, "Electrical Properties of Polyacetylene Polysiloxane Interface," Journal of Applied Physics, vol. 54, pp. 3255-3259, 1983.
    [4] D.Gamota, P. Brazis, K. Kalyanasundaram, and J. Zhang, "Printed organic and molecular electronics," Kluwer Academic Publishers, 2004.
    [5] M.-m. Ling, Z. Bao, P. Erk, M. Koenemann, and M. Gomez, "Complementary inverter using high mobility air-stable perylene di-imide derivatives," Applied Physics Letters, vol. 90, 2007.
    [6] G. Guillaud, M. A. Sadoun, and M. Maitrot, "Field-Effect Transistors Based on Intrinsic Molecular Semiconductors," Chemical Physics Letters, vol. 167, pp. 503-506, 1990.
    [7] A. R. Brown, D. M. d. Leeuw, E. J. Lous, and E. E. Havinga, "Organic N-Type Fielld-Effect Transistor," Synthetic Metals, vol. 66, pp. 257-261, 1994.
    [8] R. C. Haddon, A. S. Perel, R. C. Morris, T. T. M. Palstra, A. F. Hebard, and R. M. Fleming, "C-60 Thin-Film Transistors," Applied Physics Letters, vol. 67, pp. 121-123, 1995.
    [9] G. Horowitz, F. Kouki, P. Spearman, D. Fichou, C. Nogues, X. Pan, et al., "Evidence for n-type conduction in a perylene tetracarboxylic," Advanced Materials, vol. 8, pp. 242-245, 1996.
    [10] J. G. Laquindanum, H. E. Katz, A. Dodabalapur, and A. J. Lovinger, "n-Channel Organic Transistor Materials Based on Naphthalene frameworks," Journal of the American Chemical Society, vol. 118, pp. 11331-11332, 1996.
    [11] J. R. Ostrick, A. Dodabalapur, L. Torsi, A. J. Lovinger, E. W. Kwock, T. M. Miller, et al., "Conductivity-type anisotropy in molecular solids," Journal of Applied Physics, vol. 81, pp. 6804-6808, 1997.
    [12] Z. Bao, A. J. Lovinger, and J. Brown, "New Air-Stable n-Channel Organic Thin Film Transistors," Journal of the American Chemical Society, vol. 120, pp. 207-208, 1998.
    [13] H. E. Katz, A. J. Lovinger, J. Johnson, C. Kloc, T. Siegrist, W. Li, et al., "A soluble and air-stable organic semiconductor with high electron mobility," Nature, vol. 404, pp. 478-481, 2000.
    [14] H. E. Katz, J. Johnson, A. J. Lovinger, and W. Li, "Naphthalenetetracarboxylic Diimide-Based n-Channel Transistor Semiconductors  Structural Variation and Thiol-Enhanced Gold Contacts," Journal of the American Chemical Society, vol. 122, pp. 7787-7792, 2000.
    [15] A. Facchetti, Y. Deng, A. Wang, Y. Koide, H. Sirringhaus, T. J. Marks, et al., "Tuning the Semiconducting Properties of Sexithiophene by α,ω-Substitution—α,ω-Diperfluorohexylsexithiophene The First n-Type Sexithiophene for Thin-Film Transistors," Angewandte Chemie-international Edition pp. 4547-4551, 2000.
    [16] S. Kobayashi, T. Takenobu, S. Mori, A. Fujiwara, and Y. Iwasa1, "Fabrication and characterization of C-60 thin-film transistors with high field-effect mobillity," Applied Physics Letters, vol. 82, pp. 4581-4583, 2003.
    [17] R. J. Chesterfield, J. C. McKeen, C. R. Newman, P. C. Ewbank, D. A. d. S. Filho, J.-L. Brédas, et al., "Organic thin film transistors based on N-alkyl perylene diimides charge transport kinetics as a function gate voltage and temperature," J. Phys. Chem., vol. 108, 2004.
    [18] S. Tatemichi, M. Ichikawa, T. Koyama, and Y. Taniguchi, "High mobility n-tyype thin-film trannsistors based onn N,N'-ditridecyl perylene diimide with thermal treatments," Applied Physics Letters, vol. 89, pp. 112108-112111, 2006.
    [19] H. Klauk, U. Zschieschang, J. Pflaum, and M. Halik, "Ultralow-power organic complementary circuits," Nature, vol. 445, pp. 745-748, 2007.
    [20] S. Hüttner, M. Sommer, and M. Thelakkat, "n-type organic field effect transistors from perylene bisimide block copolymers and homopolymers," Applied Physics Letters, vol. 92, pp. 093302-093305, 2008.
    [21] Z. Wei, H. Xi, H. Dong, L. Wang, W. Xu, W. Hu, et al., "Blending induced stack-ordering and performance improvement in a solution-processed n-type organic field-effect transistor," J. Mater. Chem., vol. 20, pp. 1203-1207, 2009.
    [22] H.-G. Jeon, J. Hattori, S. Kato, N. Oguma, N. Hirata, Y. Taniguchi, et al., "Thermal treatment effects on N-alkyl perylene diimide thin-film transistors with different alkyl chain," Journal of Applied Physics, pp. 124512-124518, 2010.
    [23] W. Guo, "Electroabsorption Spectroscopy of Quasi-one-dimensional Organic Molecular Crystals," Dresden,2003.
    [24] M. Pope and C. E. Swenberg, "Electronic process in organic crystals and polymers," 1999.
    [25] R. E. Merrifield, "Ionized states in one-dimensional molecular crystal," J. Chem. Phys, vol. 34, 1835(1961).
    [26] G. U. Bublitz and S. G. Boxer, "STARK SPECTROSCOPY:Applications in Chemistry, Biology,and Materials Science," Annu. Rev. Phys. Chem, pp. 213-242, 1997.
    [27] J. Ibáñez, R. Kudrawiec, J. Misiewicz, M. Schmidbauer, M. Henini, and M. Hopkinson, "Nitrogen incorporation into strained (In, Ga) (As, N) thin films grown on (100), (511), (411), (311), and (111) GaAs substrates studied by photoreflectance spectroscopy and high-resolution x-ray diffraction," Journal of Applied Physics, vol. 100, pp. 093522-093531, 2006.
    [28] J. Misiewicz, R. Kudrawiec, K. Ryczko, G. Sęk, A. Forchel, J. C. Harmand, et al., "Photoreflectance investigations of the energy level structure in GaInNAs-based quantum wells," Journal of Physics: Condensed Matter, vol. 16, pp. S3071-S3094, 2004.
    [29] T. Manaka, S. Kawashima, and M. Iwamoto, "Charge modulated reflectance topography for probing in-plane carrier distribution in pentacene field-effect transistors," Applied Physics Letters, vol. 97, pp. 113302-113305, 2010.
    [30] S. C. Abbi and D. M. Hanson, "Detection and characterization of charge transfer excitons in molecular crystals," Journal of Chemical Physics, vol. 60, pp. 319-320, 1974.
    [31] L. Sebastian and G. Weiser, "Charge transfer transitions in solid tetracene and pentacene studied by electroabsorption," Chemical Physics vol. 61, pp. 125-135, 1981.
    [32] L. Sebastian and G. Weiser, "Charge-transfer transitions in crystalline anthracene and their role in photoconductivity," Chemical Physics, vol. 75, pp. 103-114, 1983.
    [33] L. Sebastian and G. Weiser, "One-Dimensional Wide Energy Bands in a Polydiacetylene Revealed by Electroreflectance," Physical Review Letters, vol. 46, pp. 1156-1159, 1981.
    [34] I. H. Campbell, T. W. Hagler, D. L. Smith, and J. P. Ferraris, "Direct Measurement of Conjugated Polymer Electronic Excitation Energies Using Metal/Polymer/Metal Structures," Physical Review Letters, vol. 76, pp. 1900-1903, 1996.
    [35] 周維揚, "調制光譜研究InAlAs、InP的表面費米能階與表面態分佈," 國立成功大學博士論文, 民國86.
    [36] 林益生, "以烷基駢苯衍生物作為主動層之有機薄膜電晶體," 國立成功大學碩士論文, 2008.
    [37] D. R. T. Zahn, T. U. Kampen, and H. Méndez, "Transport gap of organic semiconductors in organic modified Schottky contacts," Applied Surface Science, vol. 212, pp. 423-427, 2003.
    [38] 蔡旻志, "利用電場調制光譜研究駢苯衍生物(PTCDI)之光學性質," 國立成功大學碩士論文, 2011.
    [39] 劉彥怡, "駢苯衍生物的蕭特基能障研究," 國立台南大學碩士論文, 2005.
    [40] M. Pope and C. E. Swenberg, "Electronic Processes in Organic Crystals and Polymers," New York: Oxford University Press, 1999.
    [41] A. E. Jailaubekov, A. P. Willard, J. R. Tritsch, W.-L. Chan, N. Sai1, R. Gearba, et al., "Hot charge-transfer excitons set the time limit for charge separation at donoracceptor interfaces in organic photovoltaics.," Nature Materials, vol. 12, 2013.

    無法下載圖示 校內:2018-08-28公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE