| 研究生: |
洪士淮 Hung, Shih-Huai |
|---|---|
| 論文名稱: |
利用電場調制光譜研究駢苯衍生物(PTCDI-CnH2n+1)之激子行為 The exciton behavior of PTCDI thin films studied by electric field modulation spectroscopy |
| 指導教授: |
周維揚
Chou, Wei-Yang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Photonics |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 59 |
| 中文關鍵詞: | 電場調制光譜 、駢苯衍生物 、激子 |
| 外文關鍵詞: | electro-modulation spectroscopy, CER, PTCDI, exciton |
| 相關次數: | 點閱:86 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文的研究主要分為三個部分,第一部分利用溶液吸收光譜與薄膜吸收光譜來驗證有機分子PTCDI的電子耦合現象,第二部分為利用電場調制光譜觀察PTCDI-C_3 H_7與PTCDI-C_13 H_27的能階分布差異,藉以推測出激子的能階位置,第三部分則利用X光繞射光譜分析PTCDI-C_3 H_7與PTCDI-C_13 H_27薄膜結構對激子的影響。
藉由溶液吸收光譜與薄膜吸收光譜的比較,我們觀察到PTCDI-C_13 H_27從單一分子形成薄膜的過程,吸收峰值有紅移的現象,此外,在2.18eV附近,薄膜吸收光譜比溶液吸收光譜多了由 π 電子軌域互相耦合形成的 π 共軛鍵。在電場調制光譜與薄膜吸收光譜的比較下,我們可以觀察到PTCDI-C_3 H_7與PTCDI-C_13 H_27的能階差異,藉而推測出激子的存在,而此現象無法由薄膜吸收光譜觀察到。最後,從X光繞射光譜的分析,我們發現PTCDI-C_3 H_7與PTCDI-C_13 H_27在結晶結構上對激子傳輸的影響。
Room-temperature contactless electroreflectance (CER) was used to investigate the optical properties of a N,N’-didecylperylene-3,4,9,10-tetracarboxylic diimide (PTCDI) thin film sandwiched between indium tin oxide and aluminum electrodes (Al/PTCDI/PI/ITO/glass substrate) at ambient. The electro-modulated optical responses of the Al/PTCDI/PI/ITO/glass structures were characterized by various alternating current biases. The energy levels of PTCDI-C_3 H_7 and PTCDI-C_13 H_27 are discussed in terms of the absorption spectrum and electromodulation spectrum.
A red shift of the absorption peak and π-conjugate bonding for PTCDI-C_13 H_27 are observed in the absorption spectra under thin-film and solvent states. The presence of the exciton peak is inferred by the energy differences between the PTCDI-C_3 H_7 thin-film and the PTCDI-C_13 H_27 thin-film in the electro-modulation spectroscopy and the absorption spectra. At last, the effects of the exciton for charge transfer in the thin-film structures of the PTCDI-C_3 H_7 and the PTCDI-C_13 H_27 can be found by the X-ray diffraction spectrum analyses.
[1] H. K. M. Pope and P. Magnantevol, "Electroluminescence in organic crystal," J.Chem. Phys., vol. 38, 1963.
[2] C. Chiang, C. Fincher, Y. Park, A. Heeger, H. Shirakawa, E. Louis, et al., "Electrical Conductivity in Doped Polyacetylene," Physical Review Letters, vol. 39, pp. 1098-1101, 1977.
[3] F. Ebisawa, T. Kurokawa, and S. Nara, "Electrical Properties of Polyacetylene Polysiloxane Interface," Journal of Applied Physics, vol. 54, pp. 3255-3259, 1983.
[4] D.Gamota, P. Brazis, K. Kalyanasundaram, and J. Zhang, "Printed organic and molecular electronics," Kluwer Academic Publishers, 2004.
[5] M.-m. Ling, Z. Bao, P. Erk, M. Koenemann, and M. Gomez, "Complementary inverter using high mobility air-stable perylene di-imide derivatives," Applied Physics Letters, vol. 90, 2007.
[6] G. Guillaud, M. A. Sadoun, and M. Maitrot, "Field-Effect Transistors Based on Intrinsic Molecular Semiconductors," Chemical Physics Letters, vol. 167, pp. 503-506, 1990.
[7] A. R. Brown, D. M. d. Leeuw, E. J. Lous, and E. E. Havinga, "Organic N-Type Fielld-Effect Transistor," Synthetic Metals, vol. 66, pp. 257-261, 1994.
[8] R. C. Haddon, A. S. Perel, R. C. Morris, T. T. M. Palstra, A. F. Hebard, and R. M. Fleming, "C-60 Thin-Film Transistors," Applied Physics Letters, vol. 67, pp. 121-123, 1995.
[9] G. Horowitz, F. Kouki, P. Spearman, D. Fichou, C. Nogues, X. Pan, et al., "Evidence for n-type conduction in a perylene tetracarboxylic," Advanced Materials, vol. 8, pp. 242-245, 1996.
[10] J. G. Laquindanum, H. E. Katz, A. Dodabalapur, and A. J. Lovinger, "n-Channel Organic Transistor Materials Based on Naphthalene frameworks," Journal of the American Chemical Society, vol. 118, pp. 11331-11332, 1996.
[11] J. R. Ostrick, A. Dodabalapur, L. Torsi, A. J. Lovinger, E. W. Kwock, T. M. Miller, et al., "Conductivity-type anisotropy in molecular solids," Journal of Applied Physics, vol. 81, pp. 6804-6808, 1997.
[12] Z. Bao, A. J. Lovinger, and J. Brown, "New Air-Stable n-Channel Organic Thin Film Transistors," Journal of the American Chemical Society, vol. 120, pp. 207-208, 1998.
[13] H. E. Katz, A. J. Lovinger, J. Johnson, C. Kloc, T. Siegrist, W. Li, et al., "A soluble and air-stable organic semiconductor with high electron mobility," Nature, vol. 404, pp. 478-481, 2000.
[14] H. E. Katz, J. Johnson, A. J. Lovinger, and W. Li, "Naphthalenetetracarboxylic Diimide-Based n-Channel Transistor Semiconductors Structural Variation and Thiol-Enhanced Gold Contacts," Journal of the American Chemical Society, vol. 122, pp. 7787-7792, 2000.
[15] A. Facchetti, Y. Deng, A. Wang, Y. Koide, H. Sirringhaus, T. J. Marks, et al., "Tuning the Semiconducting Properties of Sexithiophene by α,ω-Substitution—α,ω-Diperfluorohexylsexithiophene The First n-Type Sexithiophene for Thin-Film Transistors," Angewandte Chemie-international Edition pp. 4547-4551, 2000.
[16] S. Kobayashi, T. Takenobu, S. Mori, A. Fujiwara, and Y. Iwasa1, "Fabrication and characterization of C-60 thin-film transistors with high field-effect mobillity," Applied Physics Letters, vol. 82, pp. 4581-4583, 2003.
[17] R. J. Chesterfield, J. C. McKeen, C. R. Newman, P. C. Ewbank, D. A. d. S. Filho, J.-L. Brédas, et al., "Organic thin film transistors based on N-alkyl perylene diimides charge transport kinetics as a function gate voltage and temperature," J. Phys. Chem., vol. 108, 2004.
[18] S. Tatemichi, M. Ichikawa, T. Koyama, and Y. Taniguchi, "High mobility n-tyype thin-film trannsistors based onn N,N'-ditridecyl perylene diimide with thermal treatments," Applied Physics Letters, vol. 89, pp. 112108-112111, 2006.
[19] H. Klauk, U. Zschieschang, J. Pflaum, and M. Halik, "Ultralow-power organic complementary circuits," Nature, vol. 445, pp. 745-748, 2007.
[20] S. Hüttner, M. Sommer, and M. Thelakkat, "n-type organic field effect transistors from perylene bisimide block copolymers and homopolymers," Applied Physics Letters, vol. 92, pp. 093302-093305, 2008.
[21] Z. Wei, H. Xi, H. Dong, L. Wang, W. Xu, W. Hu, et al., "Blending induced stack-ordering and performance improvement in a solution-processed n-type organic field-effect transistor," J. Mater. Chem., vol. 20, pp. 1203-1207, 2009.
[22] H.-G. Jeon, J. Hattori, S. Kato, N. Oguma, N. Hirata, Y. Taniguchi, et al., "Thermal treatment effects on N-alkyl perylene diimide thin-film transistors with different alkyl chain," Journal of Applied Physics, pp. 124512-124518, 2010.
[23] W. Guo, "Electroabsorption Spectroscopy of Quasi-one-dimensional Organic Molecular Crystals," Dresden,2003.
[24] M. Pope and C. E. Swenberg, "Electronic process in organic crystals and polymers," 1999.
[25] R. E. Merrifield, "Ionized states in one-dimensional molecular crystal," J. Chem. Phys, vol. 34, 1835(1961).
[26] G. U. Bublitz and S. G. Boxer, "STARK SPECTROSCOPY:Applications in Chemistry, Biology,and Materials Science," Annu. Rev. Phys. Chem, pp. 213-242, 1997.
[27] J. Ibáñez, R. Kudrawiec, J. Misiewicz, M. Schmidbauer, M. Henini, and M. Hopkinson, "Nitrogen incorporation into strained (In, Ga) (As, N) thin films grown on (100), (511), (411), (311), and (111) GaAs substrates studied by photoreflectance spectroscopy and high-resolution x-ray diffraction," Journal of Applied Physics, vol. 100, pp. 093522-093531, 2006.
[28] J. Misiewicz, R. Kudrawiec, K. Ryczko, G. Sęk, A. Forchel, J. C. Harmand, et al., "Photoreflectance investigations of the energy level structure in GaInNAs-based quantum wells," Journal of Physics: Condensed Matter, vol. 16, pp. S3071-S3094, 2004.
[29] T. Manaka, S. Kawashima, and M. Iwamoto, "Charge modulated reflectance topography for probing in-plane carrier distribution in pentacene field-effect transistors," Applied Physics Letters, vol. 97, pp. 113302-113305, 2010.
[30] S. C. Abbi and D. M. Hanson, "Detection and characterization of charge transfer excitons in molecular crystals," Journal of Chemical Physics, vol. 60, pp. 319-320, 1974.
[31] L. Sebastian and G. Weiser, "Charge transfer transitions in solid tetracene and pentacene studied by electroabsorption," Chemical Physics vol. 61, pp. 125-135, 1981.
[32] L. Sebastian and G. Weiser, "Charge-transfer transitions in crystalline anthracene and their role in photoconductivity," Chemical Physics, vol. 75, pp. 103-114, 1983.
[33] L. Sebastian and G. Weiser, "One-Dimensional Wide Energy Bands in a Polydiacetylene Revealed by Electroreflectance," Physical Review Letters, vol. 46, pp. 1156-1159, 1981.
[34] I. H. Campbell, T. W. Hagler, D. L. Smith, and J. P. Ferraris, "Direct Measurement of Conjugated Polymer Electronic Excitation Energies Using Metal/Polymer/Metal Structures," Physical Review Letters, vol. 76, pp. 1900-1903, 1996.
[35] 周維揚, "調制光譜研究InAlAs、InP的表面費米能階與表面態分佈," 國立成功大學博士論文, 民國86.
[36] 林益生, "以烷基駢苯衍生物作為主動層之有機薄膜電晶體," 國立成功大學碩士論文, 2008.
[37] D. R. T. Zahn, T. U. Kampen, and H. Méndez, "Transport gap of organic semiconductors in organic modified Schottky contacts," Applied Surface Science, vol. 212, pp. 423-427, 2003.
[38] 蔡旻志, "利用電場調制光譜研究駢苯衍生物(PTCDI)之光學性質," 國立成功大學碩士論文, 2011.
[39] 劉彥怡, "駢苯衍生物的蕭特基能障研究," 國立台南大學碩士論文, 2005.
[40] M. Pope and C. E. Swenberg, "Electronic Processes in Organic Crystals and Polymers," New York: Oxford University Press, 1999.
[41] A. E. Jailaubekov, A. P. Willard, J. R. Tritsch, W.-L. Chan, N. Sai1, R. Gearba, et al., "Hot charge-transfer excitons set the time limit for charge separation at donoracceptor interfaces in organic photovoltaics.," Nature Materials, vol. 12, 2013.
校內:2018-08-28公開