| 研究生: |
馬士勛 Ma, Xun-Shien |
|---|---|
| 論文名稱: |
配置PSIVC系統之即時類比式硬體模擬與複合試驗 Analog Hardware-in-the-loop Simulation and Real-Time Hybrid Testing of Polynomial Sliding Isolator with Variable Curvature |
| 指導教授: |
朱世禹
Chu, Shih-Yue |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 155 |
| 中文關鍵詞: | 即時複合試驗 、硬體模擬(Hardware-in-the-loop) 、延遲時間 、發散現象 、變曲率滑動隔震器(PSIVC) 、類比式傳輸系統 |
| 外文關鍵詞: | Real-Time Hybrid Testing, Hardware-in-the-loop Simulation, Delay time, Digital Filter, Polynomial Sliding Isolator with Variable Curvature, Analog Data Transmission System |
| 相關次數: | 點閱:130 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年台灣地區再度發生數起嚴重的地震災害,使民眾又逐漸重視結構的減震及隔震,為了證明該裝置能夠有效發揮作用,提供較可信的驗證方式為振動台試驗;然而因受限於振動台的承載能力或激振效能,往往僅能進行縮尺試驗,因尺寸效應之故,振動台試驗亦無法完整反應真實情況,為解決此問題,即時複合試驗技術因應而生。然而即時複合試驗誤差的來源眾多使得實驗難度增加,需要較成熟的實驗技術研發及控制知識背景才得以實行。本文利用硬體模擬,透過設定與即時複合試驗相似的軟、硬體架構,以評估進行真實即時複合試驗之可行性,且藉由改變硬體模擬內回授訊號的濾波器設定、硬體的延遲時間設定,探討即時複合試驗之實驗參數影響與可能之發散現象。最後,本文利用硬體模擬進行真實即時複合試驗之事前規劃,並探討實驗結果之可能誤差來源。
There have been several severe earthquake disasters happened in Taiwan again in recent years, and people have gradually begun to pay attention to the energy dissipation or base isolation technology of structures. In order to prove that these devices can work effectively, the method of verification is the shaking table testing. However, due to limitations of load capacity and performance limitations of the shaking table, often only scale-down tests can be carried out. Due to the size-effect, therefore, the shaking table test cannot fully reflect the real behavior of these devices. To solve this problem, the real-time hybrid testing technology is developed accordingly. Moreover, many influencing factors of the real-time hybrid testing cause lots of error and make the test more difficult, both cause the real-time hybrid testing requires high level experimental technology and knowledge background of control to implement it. In this thesis, the hardware-in-the-loop simulation is adopted to be the developing platform to check some key issues of the real-time hybrid testing. By changing the filter settings and the delay-time settings of the feedback signal, the hardware-in-the-loop simulation can simulate the divergence phenomenon that may cause errors in the real-time hybrid testing. This thesis discuss some key issues in the real-time hybrid testing by the hardware-in-the-loop simulation, and try to use it to arrange the experimental details prior to the real-time hybrid testing.
[1] Abdalla O, Hammad SA, Yousef HA. A Framework for Real Time Hardware in the loop Simulation for Control Design. arXiv preprint arXiv:14101342. 2014.
[2] Carrion JE, Spencer Jr BF. Model-based strategies for real-time hybrid testing. Newmark Structural Engineering Laboratory. University of Illinois at Urbana …; Report No.: 1940-9826, 2007.
[3] Chu S-Y, Liao Y-C, Ho C-W, editors. Interaction effects of detuning and time-delay on generalized hybrid mass damper systems. 10th East Asia-Pacific Conference on Structural Engineering and Construction, EASEC 2010, August 3, 2006 - August 5, 2006; Bangkok, Thailand: School of Engineering and Technology. 2006;
[4] Chu S-Y, Lin C-C, Chung L-L, Chang C-C, Lu K-H. Optimal performance of discrete-time direct output-feedback structural control with delayed control forces. Structural Control and Health Monitoring. 15(1):20-42. 2008;
[5] CHU S-Y, LO S-C. Pseudo dynamic testing of subassemblage based on discrete-time state-space integration through SCRAM-net configuration. Actes des journées scientifiques du LCPC. 327-34. 2005:
[6] Chu S-Y, Lo S-C, Li M-H, editors. Application of ScramNet System in Real-Time Pseudodynamic Test and Simulation. 4th International Conference on Earthquake Engineering; 2006.
[7] Chung W-J, Yun C-B, Kim N-S, Seo J-W. Shaking table and pseudodynamic tests for the evaluation of the seismic performance of base-isolated structures. Engineering Structures. 21(4):365-79. 1999;
[8] Dermitzakis SN, Mahin SA. Development of substructuring techniques for on-line computer controlled seismic performance testing: University of California, Berkeley; 1985
[9] Hakuno M, Shidawara M, Hara T, editors. DYNAMIC DESTRUCTIVE TEST OF A CANTILEVER BEAM, CONTROLLED BY AN ANALOG-COMPUTER. 1969.
[10] Horiuchi T, Inoue M, Konno T, Yamagishi W. Development of a real-time hybrid experimental system using a shaking table (Proposal of experiment concept and feasibility study with rigid secondary system). JSME International Journal, Series C: Mechanical Systems, Machine Elements and Manufacturing. 42(2):255-64. 1999;
[11] Lu L-Y, Lee T-Y, Juang S-Y, Yeh S-W. Polynomial friction pendulum isolators (PFPIs) for building floor isolation: An experimental and theoretical study. Engineering structures. 56:970-82. 2013;
[12] Lu L-Y, Lin G-L, Lin C-Y. Experiment of an ABS-type control strategy for semi-active friction isolation systems. Smart Structures and Systems. 8(5):501-24. 2011;
[13] Nakashima M, Kato H, Takaoka E. Development of real‐time pseudo dynamic testing. Earthquake Engineering & Structural Dynamics. 21(1):79-92. 1992;
[14] Reinhorn A, Sivaselvan M, Weinreber S, Shao X. Real-time dynamic hybrid testing of structural systems. 2004.
[15] Shi P, Wu B, Spencer BF, Phillips BM, Chang C-M. Real-time hybrid testing with equivalent force control method incorporating Kalman filter. Structural Control and Health Monitoring. 23(4):735-48. 2016;
[16] Takanashi K, Udagawa K, Seki M, Okada T, Tanaka H. Nonlinear earthquake response analysis of structures by a computer-actuator on-line system. Bulletin of Earthquake Resistant Structure Research Center. 8:1-17. 1975;
[17] TrevorPace.. In Wikipedia, the free encyclopedia. Retrieved June 10, 2020, from https://en.wikipedia.org/wiki/Butterworth_filter (2009, December 24)
[18] Wang JT, Gui Y, Zhu F, Jin F, Zhou MX. Real‐time hybrid simulation of multi‐story structures installed with tuned liquid damper. Structural Control and Health Monitoring. 23(7):1015-31. 2016;
[19] WANG T, CHENG C. A Model-based Predictor-Corrector Algorithm for Substructure Hybrid Test System. 2011.
[20] Warburton G. Optimum absorber parameters for various combinations of response and excitation parameters. Earthquake Engineering & Structural Dynamics. 10(3):381-401. 1982;
[21] Yang T, Mosqueda G, Stojadinovic B. Evaluating the quality of hybrid simulation test using an energy-based approach. 2008.
[22] Zhang R, Lauenstein PV, Phillips BM. Real-time hybrid simulation of a shear building with a uni-axial shake table. Engineering Structures. 119:217-29. 2016;
[23] 朱凱業. 多項式變曲率滑動支承之混合實驗. 台南市: 國立成功大學; 2013.
[24] 吳依寰. 摩擦型阻尼器系統之擬動態試驗與振動台驗證. 台南市: 國立成功大學; 2011.
[25] 呂仲岳. 應用即時複合實驗進行配置PFCMD多自由度系統控制參數之最佳化探討. 台南市: 國立成功大學; 2017
[26] 林煒松. 採用不同振動台進行即時複合實驗之效能探討. 台南市: 國立成功大學; 2019.
[27] 許敬昀. 摩擦型調諧質量阻尼器系統之混合實驗驗證. 台南市: 國立成功大學; 2014.
[28] 黃智遠. 配置 LSCMD 多自由度系統之類比式硬體模擬試驗. 台南市: 國立成功大學; 2019.
[29] 葉士瑋. 具摩擦特性振動控制系統即時複合實驗之振動台實驗驗證. 台南市: 國立成功大學; 2017.
[30] 賈博宇. 振動台效能對PFCMD即時複合實驗之影響探討. 台南市: 國立成功大學; 2016.
[31] 鄧孟澤. 應用數位式硬體模擬試驗進行即時振動台複合實驗誤差之階段性探討. 台南市: 國立成功大學; 2019.
[32] 顏呈璁. 多重取樣量測對擬動態試驗誤差之影響. 台南市: 國立成功大學; 2009.
[33] 羅仕杰. 記憶體共享光纖網路設備於即時擬動態試驗之初步研究. 南投縣: 國立暨南國際大學; 2005.
[34] 陳軒立.摩擦型滑動支承之摩擦係數識別研究. (碩士), 國立成功大學, 台南市. (2020)
校內:2025-08-25公開