簡易檢索 / 詳目顯示

研究生: 李俊賢
Li, Chun-Hsien
論文名稱: 有害物質與零件之關聯分析
Association Analysis of Hazardous Materials and Components
指導教授: 翁慈宗
Wong, Tzu-Tsung
學位類別: 碩士
Master
系所名稱: 管理學院 - 工業與資訊管理學系碩士在職專班
Department of Industrial and Information Management (on the job class)
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 48
中文關鍵詞: 關聯分析FP-growth演算法綠色供應鏈管理有害物質
外文關鍵詞: Association analysis, FP-growth algorithm, green supply chain management, hazardous substances
相關次數: 點閱:107下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 為滿足國際環保法規與客戶環保規範的要求,研究背景公司建置一套綠色產品管理系統GPMS,藉由GPMS管控產品料號的有害物質符合性,以確保產品所含之有害物質皆符合目前國際環保法規與客戶規範管制限值要求。隨著國際法規與客戶規範日趨嚴謹,管控的有害物質限值含量逐年降低,管制項目亦同步增加。本研究以產品料號、料號供應商與有害物質之關聯性作為研究主題,探勘出彼此之關聯性。藉由關聯規則FP-growth演算法,將產品組成結構與有害物質之含有量納入評估範疇,探勘出同類型的料號在不同供應商提供的情況下,有害物質含有量是否有明顯差異,進而納入供應商的選擇條件中,亦藉由探勘手法找出有害物質之間是否具其他關聯性,在未來管制條件變嚴苛之前,進行前瞻性的管制處理。
    本研究根據產品料號特性,將原始資料劃分成五大類別分別進行料號、供應商、有害物質三方面的研究分析,找出需關注的重點供應商與有害物質存在的風險性以及有害物質彼此之間的關聯性。藉由分析結果改善現行管理模式有所欠缺的地方,在綠色供應鏈管理方面可作為供應商選擇的參考建議,在有害物質管理方面,關注有害物質彼此之關聯性具有更精確的管制成效以落實有害物質之風險管控。

    Environmental protection is a critical issue in green supply chain management, and several regulations have been proposed to specify the thresholds of chemical substances that can be hazardous to human body. It is therefore important for managers to know the rela-tionships among the hazardous substances in products. For this purpose, this study ag-gregates the data for parts of products, suppliers, and hazardous substances to perform association analysis. Data are first divided into five categories based on the identification number of parts, and the FP-growth algorithm is applied on each one of the five categories to find association rules for parts, suppliers, and hazardous substances. Those rules pro-vide not only concrete results in choosing suppliers for parts to control hazardous sub-stances, but also the associations among hazardous substances in parts. These findings are useful in supplier selection and managing hazardous substances for parts to satisfy the requirements of the international regulations.

    第一章 緒論 1 第一節 研究背景 1 第二節 研究動機 1 第三節 研究目的 2 第四節 研究架構 2 第二章 文獻探討 3 第一節 國際環保法規崛起 3 第二節 歐盟WEEE / RoHS / REACH法規簡介 4 第三節 綠色供應鏈管理 8 第四節 關聯規則 11 第五節 本章小結 17 第三章 研究方法 18 第一節 資料架構 18 第二節 資料前處理 19 第三節 FP-growth演算法 21 第四節 關聯規則指標 24 第四章 研究結果 26 第一節 資料前置處理 26 第二節 光學料號資料集 27 第三節 觸控料號資料集 30 第四節 電子料號資料集 32 第五節 機構料號資料集 34 第六節 包裝料號資料集 37 第七節 綜合研析 39 第五章 結論與建議 42 第一節 研究發現 42 第二節 綠色供應鏈管理之建議 43 第三節 有害物質管理之建議 43 第四節 未來研究建議 44 參考文獻 45

    張日安(2007)。綠色供應鏈供應商選擇之研究。中原大學企業管理研究所碩士論文。
    楊沛昇(2012)。新RoHS指令之指引與說明。中華民國電子零件認證委員會。
    謝侑龍(2008)。e化綠色供應鏈應用-以汽車零組件製造業之毒害物質與貴金屬管理為例。國立高雄應用科技大學工業工程與管理系碩士論文。
    戴輝文(2006)。導入符合 RoHS 指令之綠色產品管理系統-以IC 設計公司為例。國立清華大學工業工程與工程管理學系碩士論文。
    Agrawal, R., Imieliński, T., & Swami, A. (1993). Mining association rules between sets of items in large databases. Acm sigmod record, 22(2), 207-216.
    Bojarski, A. D., Laínez, J. M., Espuña, A., & Puigjaner, L. (2009). Incorporating environ-mental impacts and regulations in a holistic supply chains modeling: An LCA approach. Computers & Chemical Engineering, 33(10), 1747-1759.
    Brijs, T., Swinnen, G., Vanhoof, K., & Wets, G. (1999). Using association rules for product assortment decisions: A case study. In Proceedings of the fifth ACM SIGKDD international conference on Knowledge discovery and data mining, 254-260.
    Chen, L.Z. (2004). Electronic Components Industry Yearbook. Hsin-Chu, Taiwan Industrial Technology Research Institute.
    Chen, L.Z. (2004). Domestic Technology Development Direction and Policy Regarding Worldwide Legal Requirement in Growing Environmental Concern. Hsin-Chu, Taiwan Industrial Technology Research Institute.
    European Chemicals Agency. (2006). European Chemicals Agency, (Online), http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:02006R1907-20161011&from=EN (accessed in October, 2017).
    European Parliament. (2003). Directive 2002/96/EC on Waste Electrical and Electronic Equipment, (Online), http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32002L0096 (accessed in October, 2017).
    European Parliament. (2003). Directive 2002/95/EC on the Restriction of the Use of Certain Hazardous Substances in electrical and electronic equipment, (Online), http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex:32002L0095 (accessed in October, 2017).
    Frawley, W. J., Piatetsky-Shapiro, G., & Matheus, C. J. (1992). Knowledge discovery in databases: An overview. AI magazine, 13(3), 57.
    Geldermann, J., Bertsch, V., Treitz, M., French, S., Papamichail, K. N., & Hämäläinen, R. P. (2009). Multi-criteria decision support and evaluation of strategies for nuclear re-mediation management. Omega, 37(1), 238-251.
    Genovese, A., Koh, S. L., Bruno, G., & Bruno, P. (2010). Green supplier selection: A litera-ture review and a critical perspective. Supply Chain Management and Information Sys-tems (SCMIS), 2010 8th International Conference, 1-6. IEEE
    Gunasekaran, A., Lai, K. H., & Cheng, T. E. (2008). Responsive supply chain: a competi-tive strategy in a networked economy. Omega, 36(4), 549-564.
    Hand, D. J., Mannila, H., & Smyth, P. (2001). Principles of data mining. MIT press.
    House, C. (2007). Changing Climates: Interdependencies on Energy and Climate Security for China and Europe. London: Chatham House.
    Howe, D. et al. (2008). Big data: The future of biocuration. Nature, 455(7209), 47-50.
    Hui, S. C., & Jha, G. (2000). Data mining for customer service support. Information & Management, 38(1), 1-13.
    Han, J., Pei, J., & Yin, Y. (2000). Mining frequent patterns without candidate generation. ACM sigmod record, 29(2), 1-12.
    Han, J., Pei, J., Yin, Y., & Mao, R. (2004). Mining frequent patterns without candidate gen-eration: A frequent-pattern tree approach. Data mining and knowledge discovery, 8(1), 53-87.
    Han, J., Pei, J., & Kamber, M. (2011). Data mining: concepts and techniques. Elsevier.
    Karakayali, I., Emir-Farinas, H., & Akcali, E. (2007). An analysis of decentralized collection and processing of end-of-life products. Journal of Operations Management, 25(6), 1161-1183.
    Ketikidis, P. H., Koh, S. C. L., Dimitriadis, N., Gunasekaran, A., & Kehajova, M. (2008). The use of information systems for logistics and supply chain management in South East Europe: Current status and future direction. Omega, 36(4), 592-599.
    Kuo, R. J., Wang, Y. C., & Tien, F. C. (2010). Integration of artificial neural network and MADA methods for green supplier selection. Journal of cleaner production, 18(12), 1161-1170.
    Kwak, J. K., & Gavirneni, S. (2011). Retailer policy, uncertainty reduction, and supply chain performance. International Journal of Production Economics, 132(2), 271-278.
    Lee, A. H., Kang, H. Y., Hsu, C. F., & Hung, H. C. (2009). A green supplier selection model for high-tech industry. Expert systems with applications, 36(4), 7917-7927.
    Lee, D., Park, S. H., & Moon, S. (2011). High-Utility Rule Mining for Cross-Selling. System Sciences (HICSS), 2011 44th Hawaii International Conference, 1-10. IEEE.
    Lee, W., & Stolfo, S. J. (1998). Data mining approaches for intrusion detection. USENIX Security Symposium (79-93).
    Lee, W., Stolfo, S. J., & Mok, K. W. (2002). Algorithms for mining system audit data. Data mining, rough sets and granular computing, 166-189. Physica-Verlag HD.
    Li, W. J., & Wang, S. M. (2013). Research on Assessment Method for Credit Risk in Commercial Banks of China Based on Data Mining. Applied Mechanics and Materials, 303, 1361-1364. Trans Tech Publications.
    Liang, X., Xue, C., & Huang, M. (2010). Improved apriori algorithm for mining association rules of many diseases. Computational Intelligence and Intelligent Systems, 272-279.
    Lin, R. H. (2009). Potential use of FP-growth algorithm for identifying competitive suppliers in SCM. Journal of the Operational Research Society, 60(8), 1135-1141.
    Lu, L. Y., Wu, C. H., & Kuo, T. C. (2007). Environmental principles applicable to green supplier evaluation by using multi-objective decision analysis. International Journal of Production Research, 45(18-19), 4317-4331.
    Lynch, C. (2008). Big data: How do your data grow?. Nature, 455(7209), 28-29.
    Peattie, K., & Ring, T. (1993). Greener strategies: the role of the strategic planner. Greener Management International, 3(1), 51-64.
    Piatetsky-Shapiro, G., & Frawley, W. (1991). Knowledge discovery in databases. MIT press.
    Piatetsky-Shapiro, G. (1996). Advances in knowledge discovery and data mining. Menlo Park: AAAI press.
    Rao, P., & Holt, D. (2005). Do green supply chains lead to competitiveness and economic performance?. International journal of operations & production management, 25(9), 898-916.
    Shi, C., Baldwin, J., & Koh, S. C. L. (2011). Conceptualizing green supply chain manage-ment: a structural model of drivers, practices and performance. Supply Chain Man-agement: An International Journal.
    Srivastava, S. K. (2007). Green supply‐chain management: a state‐of‐the‐art literature review. International journal of management reviews, 9(1), 53-80.
    Tang, H., Yang, Z., Zhang, P., & Yan, H. (2008). Using Data Mining to Accelerate Cross-Selling. Business and Information Management, 1, 283-286. IEEE.
    Theresia Widji, A. (2012). Apriori Application To Pattern Profile Creditor Relationships With Credit Ceiling In Rural Bank. proceedings intl conf information system business com-petitiveness.
    Tseng, M. L. (2011). Green supply chain management with linguistic preferences and in-complete information. Applied Soft Computing, 11(8), 4894-4903.
    Yao, X., & Shu, H. (2009). Study on value-added service in mobile telecom based on association rules. Software Engineering, Artificial Intelligences, Networking and Parallel/Distributed Computing, 2009 10th ACIS International Conference, 116-119. IEEE.

    下載圖示 校內:2023-06-30公開
    校外:2023-06-30公開
    QR CODE