簡易檢索 / 詳目顯示

研究生: 洪亦萱
Hung, I-Hsuan
論文名稱: 貨櫃船選擇不同替代燃料之環境和經濟效益與財務風險評估
The Evaluations of Environmental, Economic Benefits and Financial Risk with Different Alternative Fuels in Container Vessels
指導教授: 張瀞之
Chang, Ching-Chih
學位類別: 碩士
Master
系所名稱: 管理學院 - 交通管理科學系
Department of Transportation and Communication Management Science
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 74
中文關鍵詞: 貨櫃船替代燃料環境效益經濟效益風險值(VaR)財務風險管理
外文關鍵詞: Container Vessels, Alternative Fuels, Environmental and Economic Benefits, Value at Risk (VaR), Financial Risk Management
相關次數: 點閱:142下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在現今大氣中的溫室氣體不斷增加情況下,全球氣溫不斷的上升,顯示溫室效應越來越明顯,其中又以海運的污染最為嚴重,因此許多國家皆開始重視船舶排放廢氣對環境的影響。本研究將以(1)傳統海運燃料(Heavy Fuel Oil,HFO) +海運柴油(Marine Gas Oil,MGO)、(2)重油(HFO)+海運柴油(MGO)+洗滌器(Scrubber)、(3)低硫重油(Low Sulphur Heavy Fuel Oil,LSFO)+海運柴油(MGO) (4)液化天然氣(Liquefied Natural Gas,LNG)+海運柴油(MGO),以及(5)甲醇(Methanol,MeOH) +海運柴油(MGO)五種不同策略為研究對象,利用船舶活動型態排放模型計算貨櫃船舶於航程中所排放的溫室氣體,並評估船舶更換燃料所造成的經濟衝擊。最後,再透過蒙地卡羅方法模擬燃料成本漲跌之風險值,對船東或經營者進行燃料支出金額的財務變動風險管理,藉以分析燃料限硫令新規定對航運公司船舶經濟和環境之相關影響,提供相關資訊作為海運業者營運管理參考之依據。研究結果指出,在環境方面Triple E船舶每年航行於亞洲-歐洲航線之總溫室氣體排放量為90,510,031公斤,其中,以二氧化碳(CO_2)排放的88,280,250公斤最高,懸浮微粒(PM_2.5)排放的17,846公斤最低;船舶更換甲醇(MeOH)燃料後可降低約61.57%之汙染排放,為較佳之策略。在經濟方面顯示,使用傳統海運燃料之成本最低(1,421萬美元),甲醇(MeOH)策略中的新船(NB)方案次之(1,515萬美元),研究也說明落實任何一種燃料組合皆不具經濟效益。在財務風險管理方面,各燃料組合之成本風險值皆高於海運傳統燃料的2,147萬美元,但若以新船(NB)方案來說,甲醇MeOH(NB)策略之1,944萬美元的風險值最低,較符合業者所能承擔之運營風險。綜合以上,船舶若實施更換燃料策略,將可大幅降低海運對空氣污染之排放,雖然會增加航商的經濟成本,但若能參考風險值之數據,也可設置一個損益點,以達較佳之風險決策。

    The greenhouse effect has become more obvious recently, with shipping pollution being the most serious contributor. Therefore, many countries have become aware of the impact of ship emissions on the environment. In this thesis, five different policies, including (1) traditional fuels (HFO), (2) HFO+ MGO+ EGCS, (3) LSFO+ MGO, (4) LNG+ MGO, and (5) MeOH+ MGO, are focused on.
    This study used the activity-based model to estimate the emissions from container vessels and analyzed the influence of new regulations on shipping companies. Finally, this thesis simulated fuel expenditure’s VaRs with the Monte Carlo Method, thereby providing a reference of financial risk management. Results from environmental concerns show that the total annual emissions of the Triple E vessel were 90,510,031 kg, the highest emissions were CO_2 (88,280,250 kg), and the lowest was PM_2.5 (17,846 kg).
    After the strategy of replacing fuel, MeOH was found to reduce pollutant emissions by about 61.57%, which was the best. However, each fuel combination was not economical except for traditional fuels. The lowest cost was about $14.21 million for traditional fuels, and the newbuild ship option with the MeOH strategy had a sub-cost of $15.15 million. With respect to financial risk management, the fuel combination’s cost of VaR was higher than traditional fuels ($21.47 million). For the NB plan, however, the MeOH strategy had the lowest VaR ($19.44 million), which is the operational risk that relevant industries can afford.

    摘要 I 致謝 VI 目錄 VII 圖目錄 IX 表目錄 X 第一章 緒論 1 1.1 研究背景 1 1.2 研究動機 6 1.3 研究目的 8 1.4 研究流程 9 1.5 小結 10 第二章 文獻回顧 11 2.1 海運船舶因應限硫令規定可使用之策略 11 2.2 海運使用各種船用燃料之溫室氣體排放 14 2.3 海運船舶採用因應限硫策略對環境或經濟之效益 17 2.4 應用船舶航程活動模型評估燃油消耗及污染排放 23 2.5 海運船舶採用因應限硫策略之財務風險評估 25 2.6 小結 26 第三章 研究方法 34 3.1 資料蒐集與說明 34 3.2 變數說明 35 3.3 評估模型 37 3.3.1船舶燃料消耗評估模式 37 3.3.2船舶航程使用不同燃料組合之環境效益評估模型 38 3.3.3船舶航程不同燃料組合之經濟效益評估模型 39 3.3.4評估模擬不同燃料組合價格變動對經濟效益的影響 40 3.4 風險值應用在不同燃料組合的成本變動評估 41 3.5 小結 43 第四章 實證分析 44 4.1 船舶燃料消耗分析 44 4.1.1 船型設計 44 4.1.2 航線距離與港口停泊時間 44 4.1.3 船舶航次燃油消耗量 45 4.2 船舶使用不同燃料組合之污染和環境效益分析 46 4.2.1 燃料之氣體排放係數 46 4.2.2 各燃料組合的排放 47 4.2.3 各燃料組合的環境效益 49 4.3 船舶使用不同燃料組合之成本和經濟效益分析 50 4.3.1 燃料價格 50 4.3.2 各燃料組合的成本 51 4.3.3 各燃料組合的經濟效益 54 4.4 模擬價格變動對不同燃料組合之經濟效益的影響 55 4.4.1 燃料價格之變動趨勢 55 4.4.2 燃料價格變動之經濟效益 56 4.5 評估不同燃料組合的風險值應用 57 4.6 小結 62 第五章 結論與建議 63 5.1 結論 63 5.2 建議 64 5.3 研究限制 65 5.4 未來研究方向 65 參考文獻 67 英文文獻 67 中文文獻 74

    英文文獻
    Allied Market Research (2019), Global Bunker Fuel Market. Retrieved September 6, 2019, from https://www.alliedmarketresearch.com/reports-store
    Atari, Sina, and Gunnar Prause (2017). Risk assessment of emission abatement technologies for clean shipping. In International Conference on Reliability and Statistics in Transportation and Communication, 93-101.
    Branislav Dragović, Ernestos Tzannatos, Vassilis Tselentis. Romeo Meštrović, MajaŠkurić (2018). Ship emissions and their externalities in cruise ports. Transportation Research Part D, 61, 289-300.
    Burak Zincir, Cengiz Deniz, Martin Tunér (2019). Investigation of environmental, operational and economic performance of methanol partially premixed combustion at slow speed operation of a marine engine. Journal of Cleaner Production, 235, 1006-1019.
    Christopher Pease. (2018). Towards Data Science. Retrieved September 5, 2019, from https://towardsdatascience.com/an-overview-of-monte-carlo-methods-675384eb1694
    Council of Economic Advisors (2019), Economic Report of the President. Retrieved September 10, 2019, from https://www.whitehouse.gov/wp-content/uploads/2019/03/ERP-2019.pdf
    David O. Olukanni, Charles O. Esu (2018). Estimating greenhouse gas emissions from port vessel operations at the Lagos and Tin Can ports of Nigeria. Cogent Engineering, 5(1), 1507267.
    DNV GL(2018), Compliance options and implications for shipping – focus on scrubber. Retrieved May 21, 2019, from DNV GL網頁, https://www.dnvgl.com/maritime/publications/global-sulphur-cap-2020.html
    Dong Xiang, Siyu Yang, Xiuxi Li, Yu Qian (2015). Life cycle assessment of energy consumption and GHG emissions of olefins production from alternative resources in China. Energy Conversion and Management, 90 , 12-20.
    El-Taybany, A., Moustafa, M. M., Mansour, M., & Tawfik, A. A. (2019). Quantification of the exhaust emissions from seagoing ships in Suez Canal waterway. Alexandria Engineering Journal, 58:1, 19-25.
    Energy Information Administration (2016), Tighter marine fuel sulfur limits will spark changes by both refiners and vessel operators. Retrieved September 9, 2019, from https://www.eia.gov/petroleum/weekly/archive/2016/161123/includes/analysis_print.php
    European Energy Exchange AG (2018), Market Insights: Maritime fuels and the freight market – status quo and looking to 2020. Retrieved September 10, 2019, from https://www.eex-group.com/blob/84158/8c750957b02c45e4f38963aa6cf9612d/180724-market-insights-content-chart-data.pdf
    Gilbert, P, Walsh, C, Traut, M, Kesieme, U, Pazouki, K, Murphy, A(2018), Assessment of full life-cycle air emissions of alternative shipping fuels. Journal of Cleaner Production, 172, 855-866.
    Han, Tzeu-Chen, Chien-Chang Chou, and Chih-Ming Wang (2016). Cash flow at risk and risk management in bulk shipping company: Case of capesize bulk carrier. Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment, 230(1), 13-21.
    H. Elizabeth Lindstad, Carl Fredrik Rehn, Gunnar S. Eskeland (2017). Sulphur abatement globally in maritime shipping. Transportation Research Part D: Transport and Environment, 57, 303-313.
    ICCT (2017), Black Carbon Emissions and Fuel Use in Global Shipping. Retrieved May 21, 2019, from https://theicct.org/sites/default/files/publications/Global-Marine-BC-Inventory-2015_ICCT-Report_15122017_vF.pdf
    ICCT (2017), GREENHOUSE GAS EMISSIONS FROM GLOBAL SHIPPING, 2013–2015. Retrieved July 16, 2019, from https://www.theicct.org/sites/default/files/publications/Global-shipping-GHG-emissions-2013-2015_ICCT-Report_17102017_vF.pdf
    IMO (2006-2018), MPE56〜73會議決議. Retrieved July 16, 2019, from http://www.imo.org/en/KnowledgeCentre/IndexofIMOResolutions/Marine-Environment-Protection-Committee-(MEPC)/Pages/MEPC-2006-07.aspx
    IMO (2014), Third IMO Greenhouse Gas Study 2014. Retrieved September 12, 2019, from http://www.imo.org/en/OurWork/Environment/PollutionPrevention/AirPollution/Documents/Third%20Greenhouse%20Gas%20Study/GHG3%20Executive%20Summary%20and%20Report.pdf
    IMO (2016), Methanol as marine fuel: Environmental benefits, technology readiness, and economic feasibility. Retrieved July 16, 2019, from http://www.imo.org/en/OurWork/Environment/PollutionPrevention/AirPollution/Documents/Methanol%20for%20the%20web.pdf
    International Council on Clean Transportation (2020), The climate implications of using LNG as a marine fuel. Retrieved January 30, 2020, from https://theicct.org/sites/default/files/publications/Climate_implications_LNG_marinefuel_01282020.pdf
    International Council on Clean Transportation (2017), GREENHOUSE GAS EMISSIONS FROM GLOBAL SHIPPING, 2013–2015. Retrieved September 12, 2019, from https://theicct.org/sites/default/files/publications/Global-shipping-GHG-emissions-2013-2015_ICCT-Report_17102017_vF.pdf
    International Energy Agency (2019), Commentary: A capital allocation dilemma in energy transitions. Retrieved October 14, 2019, from https://www.iea.org/newsroom/news/2019/september/a-capital-allocation-dilemma-in-energy-transition.html
    IPCC (2006), 2006 IPCC Draft Guidelines for National Greenhouse Gas Inventories. Retrieved May 10, 2019, from https://www.ipcc-nggip.iges.or.jp/support/Primer_2006GLs.pdf
    James J. Winebrake, James J. Corbett, Fatima Umar, Daniel Yuska (2019), Pollution Tradeoffs for Conventional and Natural Gas-Based Marine Fuels. Sustainability, 11(8), 2235.
    James R. Evans and David L. Olson, Introduction to Simulation and Risk Analysis, Publisher: Dover Publications Inc. ISBN: 9780486779898, 31/10/2014
    Jian Hua, Chih-Wen Cheng & Daw-Shang Hwang (2019). Total life cycle emissions of post-Panamax containerships powered by conventional fuel or natural gas. Journal of the Air & Waste Management Association, 69:2, 131-144, DOI: 10.1080/10962247.2018.1505675.
    Jim Antturi, Otto Hänninen, Jukka-Pekka Jalkanen, Lasse Johansson, Marje Prank, Mikhail Sofiev (2016), Costs and benefits of low-Sulphur fuel standard for Baltic Sea shipping, Journal of environmental management, 184, 431-440.
    Jingzheng Ren, Marie Lützen (2017), Selection of sustainable alternative energy source for shipping: Multi-criteria decision making under incomplete information. Renewable and Sustainable Energy Reviews, 74, 1003-1019.
    Jinling Tian, Jianwei Tan, Naitao Hu, Tingjie Liu, Yulong Wang, Hao Zhong, Jin Cheng, Xuemin Zhang (2018). Characteristics analysis for total volatile organic compounds emissions of methanol-diesel fuel. Journal of the Energy Institute, 91, 527-533.
    Juan Moreno-Gutiérrez, Fátim Calderay, Nieves Saborido, Maria Boile, Rafael Rodríguez Valero, Vanesa Durán-Grados (2015). Methodologies for estimating shipping emissions and energy consumption A comparative analysis of current methods. Energy, 86, 603-616.
    Liping Jiang, Jacob Kronbak, Leise Pil Christensen (2014), The costs and benefits of Sulphur reduction measures: Sulphur scrubbers versus marine gas oil. Transportation Research Part D: Transport and Environment, 28, 19-24.
    Maersk line vessel information (2019), 船名. Retrieved May 21, 2019, from Maersk網頁https://www.maersk.com/schedules/
    Maria Zetterdahl, Jana Moldanova, Xiangyu Pei, Ravi Kant Pathak, Benjamin Demirdjian (2016). Impact of the 0.1% fuel sulfur content limit in SECA on particle and gaseous emissions from marine vessels. Atmospheric Environment, 145, 338-345.
    Maritime Knowledge Centre, TNO and TU Delft (2018), Methanol as an alternative fuel for vessels. Retrieved July 16, 2019, from https://platformduurzamebiobrandstoffen.nl/wp-content/uploads/2018/02/2018_MKC_TNO-TU-Delft_Methanol-as-an-alternative-fuel-for-vessels.pdf
    Martin Svanberg, Joanne Ellis, Joakim Lundgren, Ingvar Landälv (2018). Renewable methanol as a fuel for the shipping industry. Renewable and Sustainable Energy Reviews, 94, 1217-1228.
    Methanex (2015), The benefit of methanol Marine Fuel. Retrieved July 16, 2019, from https://www.methanex.com/about-methanol/methanol-marine-fuel
    Methanex Corporation (2019), Methanex posts regional contract methanol prices for North America, Europe and Asia. Retrieved May 21, 2019, from Methanex the Power of Agility網頁 https://www.methanex.com/our-business/pricing
    Michael A. Champ (2000). A review of organotin regulatory strategies, pending actions, related costs and benefits. The Science of the Total Environment, 258, 21-71.
    Michael Matzen, Yasar Demirel (2016). Methanol and dimethyl ether from renewable hydrogen and carbon dioxide Alternative fuels production and life-cycle assessment. Journal of Cleaner Production, 139, 1068-1077.
    Miluše Tichavska, Beatriz Tovar (2015). Environmental cost and eco-efficiency from vessel emissionsin Las Palmas Port. Transportation Research Part E, 83, 126-140.
    Miola, A., Ciuffo, B., Giovine, E., & Marra, M. (2010). Regulating air emissions from ships: the state of the art on methodologies, technologies and policy options. JRC Reference Reports.
    Moirangthem, K., & Baxter, D. (2016). Alternative fuels for marine and inland waterways: An exploratory study. In Tech. Rep. Publications Office of the European Union.
    Moore Stephens (2018), Future operating costs report. Retrieved September 6, 2019, from https://safety4sea.com/wp-content/uploads/2018/10/Moore-Stephens-Future-operating-costs-report-2018_10.pdf
    M. Pawlak (2015), Analysis of Economic Costs and Environmental Benefits of LNG as the Marine Vessel Fuel. Solid State Phenomena, 236, 239-246.
    Mustafa Kemal Balki, Cenk Sayin, Murat Sarıkaya (2016). Optimization of the operating parameters based on Taguchi method in an SI engine used pure gasoline, ethanol and methanol. Fuel, 180, 630-637.
    Nader R. Ammar (2019). An environmental and economic analysis of methanol fuel for a cellular container ship. Transportation Research Part D: Transport and Environment, 69, 66-76.
    Nader R. Ammar, Ibrahim S. Seddiek (2017). Eco-environmental analysis of ship emission control methods: Case study RO-RO cargo vessel. Ocean Engineering, 137, 166-173.
    National Aeronautics and Space Administration (2019), 2018 fourth warmest year in continued warming trend. Retrieved July 16, 2019, from https://climate.nasa.gov/news/2841/2018-fourth-warmest-year-in-continued-warming-trend-according-to-nasa-noaa/
    Papaefthimiou, S., Maragkogianni, A., & Andriosopoulos, K. (2016). Evaluation of cruise ships emissions in the Mediterranean basin: The case of Greek ports. International Journal of Sustainable Transportation, 10(10), 985-994.
    Paul Balcombe, James Brierley, Chester Lewis, Line Skatvedt, Jamie Speirs, Adam Hawkes, Iain Staffell (2019). How to decarbonise international shipping: Options for fuels, technologies and policies. Energy Conversion and Management, 182, 72-88.
    Paul Gilbert, Conor Walsh, Michael Traut, Uchenna Kesieme, Kayvan Pazouki , Alan Murphy (2018), Assessment of full life-cycle air emissions of alternative shipping fuels. Journal of Cleaner Production, 172, 855-866.
    PNAS (2019), Ice sheet contributions to future sea-level rise from structured expert judgment. Retrieved July 16, 2019, from https://www.pnas.org/content/116/23/11195
    Public final report (2019), Methanol as an alternative fuel for vessels. Retrieved July 16, 2019, from https://platformduurzamebiobrandstoffen.nl/wp-content/uploads/2018/02/2018_MKC_TNO-TU-Delft_Methanol-as-an-alternative-fuel-for-vessels.pdf
    R.A.O.Nunes, M.C.M.Alvim-Ferraz, F.G.Martins, S.I.V.Sousa (2019). Environmental and social valuation of shipping emissions on four ports of Portugal. Journal of nvironmental Management, 235, 62-69.
    Ravita D. Prasad and Atul Raturi (2019). Fuel demand and emissions for maritime sector in Fiji: Current status and low-carbon strategies. Marine Policy, 102, 40-50.
    Rumesh H. Merien-Paul, Hossein Enshaei, Shantha Gamini Jayasinghe (2019). Effects of fuel-specific energy and operational demands on cost/emission estimates: A case study on heavy fuel-oil vs liquefied natural gas. Transportation Research Part D, 69,77-89.
    Sebastian Verhelst, James WG Turner, Louis Sileghem, Jeroen Vancoillie (2019). Methanol as a fuel for internal combustion engines. Progress in Energy and Combustion Science, 70, 43-88.
    Ship Technology (2011),Triple-E Class Container Ships. Retrieved May 21, 2019, from https://www.ship-technology.com/projects/triple-e-class/
    Ship & Bunker (2019), Rotterdam Bunker Prices. Retrieved May 21, 2019, from https://shipandbunker.com/prices
    S Jahangiri, N Nikolova, K Tenekedjiev (2018), An improved emission inventory method for estimating engine exhaust emissions from ships. Sustainable Environment Research, 28(6), 374-381.
    Splash (2019), European Commission study backs three short-term measures to speed up shipping’s decarbonization. Retrieved July 16, 2019, from https://splash247.com/european-commission-study-backs-three-short-term-measures-to-speed-up-shippings-decarbonisation/
    Stefan Åström, Katarina Yaramenka, Hulda Winnes, Erik Fridell, Michael Holland (2018). The costs and benefits of a nitrogen emission control area in the Baltic and North Seas. Transportation Research Part D, 59, 223-236.
    Stopford, M. (2009) Maritime Economics. Routledge, London. Retrieved May 10, 2019, from https://www.scirp.org/(S(i43dyn45teexjx455qlt3d2q))/reference/ReferencesPapers.aspx?ReferenceID=1403765
    Streibel, T., Schnelle-Kreis, J., Czech, H., Harndorf, H., Jakobi, G., Jokiniemi, J., ... & Müller, L. (2017). Aerosol emissions of a ship diesel engine operated with diesel fuel or heavy fuel oil. Environmental Science and Pollution Research, 24(12), 10976-10991.
    Susana López-Aparicio, Dag Tønnesen, The Nguyen Thanh, Heidi Neilson (2017). Shipping emissions in a Nordic port: Assessment of mitigation strategies. Transportation Research Part D: Transport and Environment, 53, 205-216.
    Tatjana Paulauskiene, Martynas Bucas, Airida Laukinaite (2019). Alternative fuels for marine applications: Biomethanol-biodiesel-diesel blends. Fuel, 148, 161-167.
    Transparency Market Research (2018), Marine Fuel Management Market. Retrieved September 6, 2019, from https://www.transparencymarketresearch.com/energy-market-reports-3.html
    Trozzi, C (2011), Emission Estimate Methodology for Maritime Navigation. Retrieved May 10, 2019, from http://www.epa.gov/ttnchie1/conference/ei19/session10/trozzi.pdf
    UNCTAD (2018), Review of Maritime Transport 2018. Retrieved July 16, 2019, from UNCTAD網頁https://unctad.org/en/pages/PublicationWebflyer.aspx?publicationid=2245
    Vessel Tracking (2019), Ship and Container Tracking. Retrieved May 21, 2019, from http://www.vesseltracking.net/ship/maersk-mc-kinney-moller-9619907
    Will Kenton. (2019). CORPORATE FINANCE & ACCOUNTING. Retrieved September 5, 2019 from https://www.investopedia.com/terms/m/montecarlosimulation.asp
    WMO (2011), WMO statement on the status of the global climate in 2011. Retrieved July 16, 2019, from http://www.wmo.int/pages/prog/wcp/wcdmp/documents/1085_en.pdf
    Wood Mackenzie (2018), Global energy markets & Trends. Retrieved September 6, 2019, from https://www.woodmac.com/research/products/global-energy-markets-trends/
    World Bank (2019), Commodity Markets. Retrieved September 7, 2019, from http://www.worldbank.org/en/research/commodity-markets
    World Meteorological Organization (2019), Global Climate in 2015-2019: Climate change accelerates. Retrieved October 14, 2019, from https://public.wmo.int/en
    Yuan Yao, Yuan Chang, Runze Huang, Lixiao Zhang, Eric Masanet (2018). Environmental implications of the methanol economy in China well-to-wheel comparison of energy and environmental emissions for different methanol fuel production pathways. Journal of Cleaner Production, 172, 1381-1390.
    Yupeng Yuan, Jixiang Wang, Xinping Yan, Qing Li, Teng Long (2018). A design and experimental investigation of a large-scale solar energy/ diesel generator powered hybrid ship. Energy, 165, 965-978.
    Zaman, Muhammad Badrus, Dwi Priyanta, and Filik Trisilo (2017). Risk assessment in Financial Feasibility of Tanker Project Using Monte Carlo Simulation. International Journal of Marine Engineering Innovation and Research, 1(4), 303-316.
    中文文獻
    劉立仁、王志敏、韓子健(2019),海運燃料含硫量限制對航運公司財務風險評估-以歐亞快捷航線為例。航海技術季刊,46,1-10。

    無法下載圖示 校內:2025-07-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE