| 研究生: |
王美琄 Wang, Mei-Chuan |
|---|---|
| 論文名稱: |
以模擬最佳化分析閉環輸送系統之生產力-以粉體塗裝製程為例 The Use of Simulation Optimization in Analyzing the Productivity Problem from a Closed-loop Conveyor System:the Case of Powder Coating |
| 指導教授: |
楊大和
Yang, Ta-ho |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 製造資訊與系統研究所 Institute of Manufacturing Information and Systems |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 74 |
| 中文關鍵詞: | 模擬最佳化 、機器干擾問題 、閉環輸送系統 、生產力 、粉體塗裝 |
| 外文關鍵詞: | Simulation optimization, Machine interference problem, Closed-loop conveyor system, Productivity, Powder coating |
| 相關次數: | 點閱:181 下載:21 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以不可逆、連續的閉環輸送系統為研究對象,工件透過工站上料後,常以輸送帶搭配不同載具的形式,按著固定的速度、固定路線及依序經過各個工站進行人工作業後,再由同一個或鄰近的工站下料離開系統。對於一個因受限輸送帶運轉速度而產能有限的輸送系統而言,初步將先應用精實管理工具進行現場改善、消除浪費,再利用離散事件模擬檢視系統現況產出率,最後透過模擬最佳化的方式調整人力水準及人力配置的方式,以嘗試降低由機器干擾問題造成的產能損失,並以一家建材/傢俱製造商的現況固定配置32人的粉體塗裝製程為例來驗證本研究方法的實效。
經實例驗證與敏感度分析,在初步製造現場改善後,現場作業環境增加80平方公尺的彈性作業空間,此外也減少物流人員每日47%移動時間及產線人員作業時間47分鐘。基於初步改善後,在適當的假設及模擬分析後可發現能優化,在不降低由32人達到的既有產出率89%下,以正常作業時間8小時內的產出及人力水準26人的配置方式改善人員利用率來達到節省人力的效果,改善幅度約為18.8%,人員利用率改善幅度則為15%至28%。最後再以敏感度分析來驗證本研究分析在需求波動下的效果。
This research aims to solve a nonreversible, continuous closed-loop conveyor system. The work pieces usually move by carriers which are attached to the conveyor and processed in a constant speed after loaded at the specific station. For such a capacitated production system due to the restricted speed of conveyor, primary we carry out Gemba Kaizen to eliminate the waste through the conception of lean management. Next, we implement a discrete-event simulation that attempt to optimize the staffing level and allocation to reduce the production loss caused by machine interference problem. This research verifies the solution performance through a case study in a powder coating process of a general metal manufacturer with fixed staffing level in 32.
After the verification and improvement in the practical system, the preliminary result shows the Gemba Kaizen can release 80 square meters for flexible space in our case study. In addition, 47% daily transportation time as well as 47 minutes for staffing time can be reduced. Based on those results, we further make appropriate assumptions and propose a simulation optimization experiment. According to the numerical analysis, we can achieve the 89% throughput rate while improving staffing utilization and reducing the staffing level to 26 on the premise of the present situation with staffing level in 32. The staffing level improvement can up to 18.8% and staffing utilization improvement between 15% to 28% . Furthermore, we verify the validity of this research through the sensitivity analysis.
Powder Coating Institute. (1981). Key Markets and Applications. May 18, 2020 Accessed, From https://www.powdercoating.org/page/Appls.
Material Handling Institute. (1945). Material Handling Overview. June 05, 2020 Accessed,
From https://www.mhi.org/fundamentals/material-handling.
American Coatings Association. (2020). Global Market Analysis for the Paint and Coatings Industry. June 08, 2020 Accessed, From https://www.paint.org/coatingstech-magazine/articles/asia-pacific-coatings-region-poised-for-continued-growth-through-2024/?fbclid=IwAR3H6RfQuyDiOdMooZwYaiGsZ6PtTGRBNcaXkirV0McL_lJ71Y9WfukxJQ4.
Plantation Prestige Corporate. (2019). Products picture. May 18, 2020 Accessed, From https://fencing.plantationprestige.com/products/.
Magtonic. (1985). Products picture. May 18, 2020 Accessed, From https://www.magtonic.com/?action=pro.
Gogoro. (2011). Products picture. May 18, 2020 Accessed, From https://www.gogoro.com/tw/.
Abdulmalek, F. A., & Rajgopal, J. (2007). Analyzing the benefits of lean manufacturing and value stream mapping via simulation: A process sector case study. International Journal of Production Economics, 107(1), 223-236.
Amaran, S., Sahinidis, N. V., Sharda, B., & Bury, S. J. (2016). Simulation optimization: a review of algorithms and applications. Annals of Operations Research, 240(1), 351-380.
Andradóttir, S. (1998). A review of simulation optimization techniques. In: Proceedings of the 1998 Winter Simulation Conference, Washington, DC, USA, 151-158.
April, J., Better, M., Glover, F., Kelly, J., & Laguna, M. (2006). Enhancing business process management with simulation optimization. In: Proceedings of the 2006 Winter Simulation Conference, California, USA, 642-649.
Bose, S., & Bogner, R. H. (2007). Solventless pharmaceutical coating processes: a review. Pharmaceutical Development and Technology, 12(2), 115-131.
Bradley, A. (2007). OptQuest for Arena User’s Guide, Rockwell Software.
Banks, J., Carson, I., Nelson, B. L., & Nicol, D. M. (2005). Discrete-Event System Simulation. New York: Pearson.
Berry, K. (1968). Work Measurement in Multiple Machine Assignments. Journal of Industrial Engineering, 19(8), 17.
Fishman, G. S. (2013). Discrete-event simulation: Modeling, Programming, and Analysis. New York: Springer.
Gendreau, M., & Potvin, J.-Y. (2010). Handbook of Metaheuristics. New York: Springer.
Glover, F., Kelly, J. P., & Laguna, M. (1996). New advances and applications of combining simulation and optimization. In: Proceedings of the 1996 Winter Simulation Conference, California, USA, 144-152.
Glover, F., & Laguna, M. (1998). Tabu search. In Handbook of Combinatorial Optimization (pp. 2093-2229). Boston, MA: Springer.
Glover, F., Laguna, M., & Martí, R. (2000). Fundamentals of scatter search and path relinking. Control and Cybernetics, 29(3), 653-684.
Hollenstein, L., Lötscher, A., & Luccarini, F. (2018). SimLack: simulation-based optimization and scheduling of generic powder coating lines. In: Proceedings of the 24. Symposium Simulationstechnik(ASIM), Hamburg, Deutschland, 04-05.
Haque, L., & Armstrong, M. J. (2007). A survey of the machine interference problem. European Journal of Operational Research, 179(2), 469-482.
Hayes, R. H. (1979). Link manufacturing process and product life cycle. Harvard Business Review, 133-140.
Hopp, W. J., & Spearman, M. L. (2011). Factory Physics. Long Grove, IL: Waveland Press.
Ho, F. H., Abu, M. A. H. C. S., & Woo, Y. L. (2019). Line balancing synchronization in powder coating workstation: A metal industry case study. In: Proceedings of IOP Conference Series: Materials Science and Engineering, 607, 1-7.
Jones, D. (1946). A simple way to figure machine down time. Factory Management and Maintenance, 104(10), 118-121.
Kelton, W. D., Sadowski, R. P., & Sturrock, D. T. (2004). Simulation with Arena. New York: McGraw-hill.
Kenne, J.-P., & Gharbi, A. (2001). A simulation optimization approach in production planning of failure prone manufacturing systems. Journal of Intelligent Manufacturing, 12(5-6), 421-431.
Kwo, T. (1960). A method for designing irreversible overhead loop conveyors. Journal of Industrial Engineering, 11(6), 459-467.
Laguna, M. (1997). Optimization of complex systems with OptQuest. A White Paper from OptTek Systems, 1-13.
Laguna, M., & Marklund, J. (2013). Business Process Modeling, Simulation and Design. Boca Raton, Florida: CRC Press.
Pearnchob, N., & Bodmeier, R. (2003). Coating of pellets with micronized ethylcellulose particles by a dry powder coating technique. International Journal of Pharmaceutics, 268(1-2), 1-11.
Ohno, T. (1988). Toyota Production System: Beyond Large-scale Production. Boca Raton, Florida: CRC Press.
Raviv, A. (1995). Applications of queuing theory and simulation to staffing in the semiconductor clean room environment. In: Proceedings of International Symposium on Semiconductor Manufacturing, Austin, TX, USA, 252-256.
Raviv, A. (1998). Optimal staffing in semiconductor manufacturing: A queueing theory approach. Solid State Technology, 41(4), 77-80.
Rother, M., & Shook, J. (2003). Learning to See: Value Stream Mapping to Add Value and Eliminate Muda. Boston: Lean Enterprise Institute.
Stecke, K. E., & Aronson, J. E. (1985). Review of operator/machine interference models. International Journal of Production Research, 23(1), 129-151.
Sule, D. R. (2008). Manufacturing Facilities: Location, Planning, and Design. Boca Raton, Florida: CRC press.
Tangen, S. (2002). Understanding the concept of productivity. In: Proceedings of the 7th Asia-Pacific Industrial Engineering and Management Systems Conference, Taipei, Taiwan, 18-20.
Tompkins, J. A., White, J. A., Bozer, Y. A., & Tanchoco, J. M. A. (2010). Facilities planning. Danvers, MA: John Wiley & Sons press.
Trojanowska, J., Kolinski, A., Galusik, D., Varela, M. L., & Machado, J. (2018). A methodology of improvement of manufacturing productivity through increasing operational efficiency of the production process. In Advances in Manufacturing (pp. 23-32): Springer.
Wilson, H., & Zettl, R. (2013). Simulation and Optimization Based Flexible Job Scheduling of Powder Coating Lines. In: Proceedings IFIP International Conference on Digital Product and Process Development Systems, Berlin, Heidelberg.
Wright, W. R. (1936). Machine Interference. Mechanical Engineering, 58(8), 510-514.
Yang, T., Fu, H.-P., & Yang, C. (2002). A simulation-based dynamic operator assignment strategy considering machine interference-a case study on integrated circuit chip moulding operations. Production Planning & Control, 13(6), 541-551.
Yang, T., Kuo, Y., & Chang, I. (2004). Tabu-search simulation optimization approach for flow-shop scheduling with multiple processors—a case study. International Journal of Production Research, 42(19), 4015-4030.
Yang, T., Lee, R.-S., Chen, M.-C., & Chen, P. (2005). Queueing network model for a single-operator machine interference problem with external operations. European Journal of Operational Research, 167(1), 163-178.
Yang, T. (2009). An evolutionary simulation–optimization approach in solving parallel-machine scheduling problems–A case study. Computers & Industrial Engineering, 56(3), 1126-1136.
Yang, T., Hsieh, C.-H., & Cheng, B.-Y. (2011). Lean-pull strategy in a re-entrant manufacturing environment: a pilot study for TFT-LCD array manufacturing. International Journal of Production Research, 49(6), 1511-1529.
Yu, B., & Popplewell, K. (1994). Metamodels in manufacturing: a review. The International Journal of Production Research, 32(4), 787-796.