簡易檢索 / 詳目顯示

研究生: 葉千瑩
Yeh, Chien-Yin
論文名稱: 以幾丁聚醣,核醣,梔子素交聯膠原蛋白膜之特性研究
Property Characterization of Fish Scale Collagen Cross-linked with Ribose、Genipin and Chitosan
指導教授: 黃福永
Huang, Fu-Yung
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 82
中文關鍵詞: 膠原蛋白幾丁聚醣梔子素核醣交聯
外文關鍵詞: fish scale collagen, Chitosan, Genipin, Ribose, Cross-linking
相關次數: 點閱:81下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 中文摘要
    本研究主要目的為探討以生物相容性較高、毒性較低之交聯劑(Genipin、
    Chitosan、Ribose)來交聯不同分子量大小與分布範圍之台灣鯛魚鱗膠原蛋白。
    將各個不同比例之交聯劑與膠原蛋白進行交聯反應後分別凍乾成膜,再利用電
    子掃描顯微鏡(SEM)、膨潤度(Swelling ratio)、交聯指數(Ninhydrin assay)、熱變
    性溫度(Td)等進行物性分析測試來探討出最佳之交聯條件。
    由結果我們可以發現,其最佳交聯條件為: 1%幾丁聚醣+ 1%梔子素+ 0.6g
    膠原蛋白,且使用分子量較大、分布平均之膠原蛋白時,其交聯膜呈現最佳之
    交聯效果。由SEM放大兩千倍加以觀察,發現其表面幾乎沒有孔洞與皺褶,呈
    現極佳之交聯狀態。在DSC分析中也可觀察到,其熱變性溫度由未交聯前之魚
    鱗膠原蛋白的20~25℃上升到最高可達131.6℃。由IR光譜可發現,醯胺鍵的
    吸收訊號在交聯前與交聯後產生些微位移,但大部分膠原蛋白的吸收訊號仍然
    存在且維持不變,由此可加以推測交聯發生在膠原蛋白案及結構中之醯胺
    (amide)位置,且主要結構不變。此外,在實驗過程中發現梔子素之比例上升
    時,其交聯膜之藍色也會相對增加,推測是因其分子內共振增加使其顏色更加
    明顯且交聯程度越好。
    魚鱗膠原蛋白之醫用敷料在市場上有極大的發展性,本研究雖探討出有最
    佳交聯效果之交聯劑與膠原蛋白比例,但仍須配合後人的生物實驗來加以探討
    出何種孔徑大小與交聯程度最適合細胞的貼附與增生,來增加其實用性且期望
    在醫用敷料的應用上有良好的潛力。

    關鍵字: 膠原蛋白、幾丁聚醣、梔子素、核醣、交聯

    SUMMARY
    In this study, the main purpose is to discuss the feasibility of preparing the biomaterial film from the Taiwan Tilapia scale collagen which have difference molecular weight by cross-linkes with genipin, chitosan, and/or ribose. We used HPLC to compare the difference of molecular weight between the different extraction times. It is very different from previous studies that only focused on the crosslinking agents. The physical properties are measured by scanning electron microscopy (SEM), cross-linked index (Ninhydrin assay), degree of swelling (Swelling ratio) and thermal denaturation temperature (Td). From the results, we can find out that the best cross-linking conditions are: 1% chitosan + 1% genipin + 0.6g Collagen. In addition, when using the collagen with larger molecular weight, the cross-linked membranes show the best interation effect. Besides, during the experiment we found out that when the content of genipin increased, not only the cross-linking degree increased, but the blue color became darker.

    Key words: fish scale collagen、Chitosan、Genipin、Ribose、Cross-linking

    中文摘要.. I 英文摘要.. II 致謝..... V 目錄..... VI 表目錄... IX 圖目錄... X 第一章 序論 1 1.1前言 1 1.1.1 台灣漁業現況 1 1.1.2 魚鱗成分與利用 1 1.1.3 研究動機與目的 2 1.2、醫用敷料材料簡介 2 1.2.1敷料的特性 2 1.2.2敷料的種類 2 1.3、膠原蛋白簡介 3 1.3.1、膠原蛋白的來源 3 1.3.2、膠原蛋白的結構 3 1.3.3、膠原蛋白的生合成 4 1.3.4、膠原蛋白的型態與分類 4 1.3.5、膠原蛋白的性質 6 1.3.6、膠原蛋白之生理功能 7 1.3.7、膠原蛋白之應用與潛力 8 1.3.8、膠原蛋白之萃取 9 1.4幾丁聚醣(Chitosan)的簡介與來源 10 1.4.1幾丁聚醣(Chitosan)與幾丁質(Chitin) 10 1.4.2幾丁聚醣的形成 10 1.4.3幾丁聚醣(Chitosan)的結構與物理化學性質 11 1.5梔子素(Genipin)的簡介與來源 12 1.6核醣(Ribose)的簡介與來源 13 1.7 交聯機制探討 14 第二章 分析方法之原理介紹 18 2.1、灰份成分分析 18 2.2、蛋白質濃度測試(Braford assay) 18 2.3、膠原蛋白分子量分析 19 2.4、交聯指數測定--Ninhydrin(NHN) assay自由胺基的測量 22 2.5、膨潤度(swelling ratio)測試 24 2.6、傅立葉轉換紅外線光譜分析(FT-TR Analysis) 24 2.7、熱穩定性之測試(DSC Analysis) 25 2.8、掃描式電子顯微鏡(Scanning Electron microscope, SEM) 26 2.9、蛋白質電泳(SDS-PAGE) 26 第三章 藥品、儀器與實驗方法 28 3.1、實驗藥品 28 3.2 儀器設備 29 3.3 前處理之實驗方法 30 3.3.1 魚鱗之前處理 30 3.3.2 魚鱗膠原蛋白之萃取 30 3.4 膠原蛋白膜的製備 31 3.4.1 交聯基材的選擇 31 3.4.2 交聯劑製備 31 3.4.3 以0.3g之膠原蛋白複合基材製備 32 3.4.4 以0.6g之膠原蛋白複合基材製備 33 3.5 分析方法 34 3.5.1 灰份成分分析 34 3.5.2 蛋白質濃度測試(Braford assay) 34 3.5.3 膠原蛋白分子量分析 35 3.5.4 交聯指數測定--Ninhydrin assay自由胺基的測量 36 3.5.5 膨潤度(swelling ratio)測試 36 3.5.6 傅立葉轉換紅外線光譜分析(FT-TR Analysis) 37 3.5.7 熱穩定性之測試(DSC Analysis) 37 3.5.8 掃描式電子顯微鏡(Scanning Electron microscope, SEM) 37 3.5.9 蛋白質電泳(SDS-PAGE)-十二烷基硫酸鈉聚丙烯醯胺凝膠電泳 38 第四章 實驗結果與討論 43 4.1 台灣鯛魚鱗膠原蛋白前處理探討 43 4.2 台灣鯛魚鱗灰份測試之探討 44 4.3 之十二烷基硫酸鈉聚丙醯胺凝膠電泳(SDS-PAGE) 45 4.4 台灣鯛魚鱗膠原蛋白高溫萃取之探討 45 4.6 經高溫萃取後之膠原蛋白濃度測定 48 4.7 不同交聯劑製備膠原蛋白膜之研究: 49 4.7.1不同交聯劑製備膠原蛋白膜之膜外觀探討 50 4.7.2 魚鱗膠原蛋白膜之傅立葉轉換紅外線光譜分析 53 4.7.3 魚鱗膠原蛋白膜之交聯指數及膨潤度測試 55 4.7.4 魚鱗膠原蛋白膜之熱變性指數(Td值)分析 62 4.7.5 魚鱗膠原蛋白膜之掃描式電子顯微鏡(SEM)結構型態分析 65 4.8 以不同分子量的魚鱗膠原蛋白交聯之探討 71 4.8.1不同交聯劑製備膠原蛋白膜之膜外觀探討 72 4.8.2 魚鱗膠原蛋白膜之交聯指數及膨潤度測試 73 4.8.3 魚鱗膠原蛋白膜之熱變性指數(Td值)分析 74 4.8.4不同分子量之交聯膜的掃描式電子顯微鏡(SEM)結構型態分析 75 第五章 結論 77 第六章 參考文獻 78

    第六章 參考文獻
    1. Ahmad, M.; Nirmal, N. P.; Chuprom, J., Molecular characteristics of collagen extracted from the starry triggerfish skin and its potential in the development of biodegradable packaging film. RSC advances 2016, 6 (40), 33868-33879.
    2. Fathke, C.; Wilson, L.; Hutter, J.; Kapoor, V.; Smith, A.; Hocking, A.; Isik, F., Contribution of bone marrow–derived cells to skin: collagen deposition and wound repair. Stem cells 2004, 22 (5), 812-822.
    3. 林建智, 台灣鯛魚鱗膠原蛋白核糖交聯之研究. 成功大學化學系學位論文 2010, 1-88.
    4. 赵玉榕, 台湾渔业的困境与出路. 两岸关系 2006, (10), 15-17.
    5. 王品捷, 酵素水解之台灣鯛魚鱗膠原蛋白生物活性之研究. 成功大學化學系學位論文 2013, 1-72.
    6. Rubin, A. L.; Miyata, T.; Stenzel, K. H., Collagen: medical and surgical applications. Journal of Macromolecular Science—Chemistry 1969, 3 (1), 113-118.
    7. Raiskup-Wolf, F.; Hoyer, A.; Spoerl, E.; Pillunat, L. E., Collagen crosslinking with riboflavin and ultraviolet-A light in keratoconus: long-term results. Journal of Cataract & Refractive Surgery 2008, 34 (5), 796-801.
    8. Jorge-Herrero, E.; Fernandez, P.; Turnay, J.; Olmo, N.; Calero, P.; Garcı́a, R.; Freile, I.; Castillo-Olivares, J., Influence of different chemical cross-linking treatments on the properties of bovine pericardium and collagen. Biomaterials 1999, 20 (6), 539-545.
    9. 劉媛婷, 台灣鯛魚鱗膠原蛋白-明膠-幾丁聚醣交聯創傷敷料之製備與特性研究. 2015.
    10. Guang, X. Z.; Moon, C.-M.; Kwak, J.-S.; Oh, K.-W.; Bae, H.-I.; Han, J.-Y., Biomedical application of PHBV/collagen (PHCP) nanofiber as the wound dressing. Journal of Biomedical Research 2011, 12 (3), 147-155.
    11. 高煒堯, 利用魚鱗萃取膠原蛋白製備傷口敷料之性質與改良. 中興大學化學工程學系所學位論文 2017, 1-62.
    12. Muralidharan, N.; Shakila, R. J.; Sukumar, D.; Jeyasekaran, G., Skin, bone and muscle collagen extraction from the trash fish, leather jacket (Odonus niger) and their characterization. Journal of Food Science and Technology 2013, 50 (6), 1106-1113.
    13. Shoulders, M. D.; Raines, R. T., Collagen structure and stability. Annual review of biochemistry 2009, 78, 929-958.
    14. Mays, P.; McANULTY, R. J.; Campa, J. S.; Laurent, G. J., Age-related changes in collagen synthesis and degradation in rat tissues. Importance of degradation of newly synthesized collagen in regulating collagen production. Biochemical Journal 1991, 276 (2), 307-313.
    15. 陳詩燕, 以幾丁聚醣, 核醣, 梔子素交聯台灣鯛膠原蛋白膜之特性研究. 成功大學化學系學位論文 2011, 1-93.
    16. Bailey, A.; Bazin, S.; Sims, T.; Le Lous, M.; Nicoletis, C.; Delaunay, A., Characterization of the collagen of human hypertrophic and normal scars. Biochimica et Biophysica Acta (BBA)-Protein Structure 1975, 405 (2), 412-421.
    17. Muzzarelli, R. A.; El Mehtedi, M.; Bottegoni, C.; Aquili, A.; Gigante, A., Genipin-crosslinked chitosan gels and scaffolds for tissue engineering and regeneration of cartilage and bone. Marine drugs 2015, 13 (12), 7314-7338.
    18. Bornstein, P.; Piez, K. A., The nature of the intramolecular cross-links in collagen. The separation and characterization of peptides from the cross-link region of rat skin collagen. Biochemistry 1966, 5 (11), 3460-3473.
    19. Bailey, A.; Robins, S.; Balian, G., Biological significance of the intermolecular crosslinks of collagen. Nature 1974, 251 (5471), 105-109.
    20. Bailey, A., Intermediate labile intermolecular crosslinks in collagen fibres. Biochimica et Biophysica Acta (BBA)-Protein Structure 1968, 160 (3), 447-453.
    21. 楊人龍, 台灣鯛魚皮膠原蛋白, 明膠和膠原蛋白水解液之特性研究與比較. 2008.
    22. Kittiphattanabawon, P.; Benjakul, S.; Visessanguan, W.; Nagai, T.; Tanaka, M., Characterisation of acid-soluble collagen from skin and bone of bigeye snapper (Priacanthus tayenus). Food chemistry 2005, 89 (3), 363-372.
    23. Viguet-Carrin, S.; Garnero, P.; Delmas, P., The role of collagen in bone strength. Osteoporosis international 2006, 17 (3), 319-336.
    24. Erwin, R. L., Glucan/collagen therapeutic eye shields. Google Patents: 1990.
    25. Miller, B. F.; Olesen, J. L.; Hansen, M.; Døssing, S.; Crameri, R. M.; Welling, R. J.; Langberg, H.; Flyvbjerg, A.; Kjaer, M.; Babraj, J. A., Coordinated collagen and muscle protein synthesis in human patella tendon and quadriceps muscle after exercise. The Journal of physiology 2005, 567 (3), 1021-1033.
    26. Tedder, M. E.; Liao, J.; Weed, B.; Stabler, C.; Zhang, H.; Simionescu, A.; Simionescu, D. T., Stabilized collagen scaffolds for heart valve tissue engineering. Tissue Engineering Part A 2009, 15 (6), 1257-1268.
    27. Miller, E. J.; Rhodes, R. K., [2] Preparation and characterization of the different types of collagen. In Methods in enzymology, Elsevier: 1982; Vol. 82, pp 33-64.
    28. Ksander, G.; Ogawa, Y., Collagen wound healing matrices and process for their production. Google Patents: 1990.
    29. Appell, R. A., Collagen injection therapy for urinary incontinence. The Urologic clinics of North America 1994, 21 (1), 177-182.
    30. Okada, T.; Hayashi, T.; Ikada, Y., Degradation of collagen suture in vitro and in vivo. Biomaterials 1992, 13 (7), 448-454.
    31. Kakisis, J. D.; Liapis, C. D.; Breuer, C.; Sumpio, B. E., Artificial blood vessel: the Holy Grail of peripheral vascular surgery. Journal of vascular surgery 2005, 41 (2), 349-354.
    32. Cullen, B.; Watt, P. W.; Lundqvist, C.; Silcock, D.; Schmidt, R. J.; Bogan, D.; Light, N. D., The role of oxidised regenerated cellulose/collagen in chronic wound repair and its potential mechanism of action. The international journal of biochemistry & cell biology 2002, 34 (12), 1544-1556.
    33. 饒梓平, 由魚鱗萃取出膠原蛋白製備人工皮及其在經皮吸收之量化分析. 中興大學化學工程學系所學位論文 2016, 1-61.
    34. Schmidt, M.; Dornelles, R.; Mello, R.; Kubota, E.; Mazutti, M.; Kempka, A.; Demiate, I., Collagen extraction process. International Food Research Journal 2016, 23 (3).
    35. Longin, R., New method of collagen extraction for radiocarbon dating. Nature 1971, 230 (5291), 241-242.
    36. Brown, T. A.; Nelson, D. E.; Vogel, J. S.; Southon, J. R., Improved collagen extraction by modified Longin method. Radiocarbon 1988, 30 (2), 171-177.
    37. Kumar, M. N. R., A review of chitin and chitosan applications. Reactive and functional polymers 2000, 46 (1), 1-27.
    38. Fei Liu, X.; Lin Guan, Y.; Zhi Yang, D.; Li, Z.; De Yao, K., Antibacterial action of chitosan and carboxymethylated chitosan. Journal of applied polymer science 2001, 79 (7), 1324-1335.
    39. Xia, W.; Liu, P.; Zhang, J.; Chen, J., Biological activities of chitosan and chitooligosaccharides. Food hydrocolloids 2011, 25 (2), 170-179.
    40. Anjum, S.; Arora, A.; Alam, M.; Gupta, B., Development of antimicrobial and scar preventive chitosan hydrogel wound dressings. International journal of pharmaceutics 2016, 508 (1-2), 92-101.
    41. Chen, Z.; Mo, X.; Qing, F., Electrospinning of collagen–chitosan complex. Materials Letters 2007, 61 (16), 3490-3494.
    42. Yan, L. P.; Wang, Y. J.; Ren, L.; Wu, G.; Caridade, S. G.; Fan, J. B.; Wang, L. Y.; Ji, P. H.; Oliveira, J. M.; Oliveira, J. T., Genipin‐cross‐linked collagen/chitosan biomimetic scaffolds for articular cartilage tissue engineering applications. Journal of Biomedical Materials Research Part A 2010, 95 (2), 465-475.
    43. Bishop, C.; Cooper, F., Glycosidation of sugars: II. Methanolysis of d-xylose, d-arabinose, d-lyxose, and d-ribose. Canadian Journal of Chemistry 1963, 41 (11), 2743-2758.
    44. Bailey, A. J.; Sims, T.; Avery, N. C.; Halligan, E. P., Non-enzymic glycation of fibrous collagen: reaction products of glucose and ribose. Biochemical Journal 1995, 305 (2), 385-390.
    45. Liu, T. X.; Wang, Z., Collagen crosslinking of porcine sclera using genipin. Acta ophthalmologica 2013, 91 (4), e253-e257.
    46. Pitaru, S.; Noff, M.; Blok, L.; Nir, E.; Pitaru, S.; Goldlust, A.; Savion, N., Long‐Term Efficacy of a Novel Ribose–Cross‐linked Collagen Dermal Filler: A Histologic and Histomorphometric Study in an Animal Model. Dermatologic surgery 2007, 33 (9), 1045-1054.
    47. Sarkar, S. D.; Farrugia, B. L.; Dargaville, T. R.; Dhara, S., Chitosan–collagen scaffolds with nano/microfibrous architecture for skin tissue engineering. Journal of Biomedical Materials Research Part A: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials 2013, 101 (12), 3482-3492.
    48. Noff, M.; Pitaru, S., Cross-linked collagen matrices and methods for their preparation. Google Patents: 2004.
    49. Sundararaghavan, H. G.; Miksan, J. R.; Shreiber, D. In Characterization of genipin-crosslinked collagen gels, 2005 Summer Bioengineering Conference, 2005; pp 1514-1515.
    50. 董信光; 李荣玉; 刘志超; 周新刚; 殷炳毅, 生物质与煤混燃的灰分特性分析. 中国电机工程学报 2009, (26), 118-124.
    51. López, J.; Imperial, S.; Valderrama, R.; Navarro, S., An improved Bradford protein assay for collagen proteins. Clinica chimica acta 1993, 220 (1), 91-100.
    52. Vrijbergen, R.; Soeteman, A.; Smit, J., Calibration of GPC with polydisperse standards. Journal of Applied Polymer Science 1978, 22 (5), 1267-1276.
    53. Zhang, X.; Chen, X.; Yang, T.; Zhang, N.; Dong, L.; Ma, S.; Liu, X.; Zhou, M.; Li, B., The effects of different crossing-linking conditions of genipin on type I collagen scaffolds: an in vitro evaluation. Cell and tissue banking 2014, 15 (4), 531-541.
    54. Weadock, K.; Olson, R. M.; Silver, F. H., Evaluation of collagen crosslinking techniques. Biomaterials, medical devices, and artificial organs 1983, 11 (4), 293-318.
    55. Mentink, C. J.; Hendriks, M.; Levels, A. A.; Wolffenbuttel, B. H., Glucose-mediated cross-linking of collagen in rat tendon and skin. Clinica Chimica Acta 2002, 321 (1-2), 69-76.
    56. Barbani, N.; Giusti, P.; Lazzeri, L.; Polacco, G.; Pizzirani, G., Bioartificial materials based on collagen: 1. Collagen cross-linking with gaseous glutaraldehyde. Journal of Biomaterials Science, Polymer Edition 1996, 7 (6), 461-469.
    57. Hara, M.; Koshimizu, N.; Yoshida, M.; Haug, I. J.; Ulset, A.-S. T.; Christensen, B. E., Cross-linking and depolymerisation of γ-irradiated fish gelatin and porcine gelatin studied by SEC-MALLS and SDS-PAGE: a comparative study. Journal of Biomaterials Science, Polymer Edition 2010, 21 (6-7), 877-892.

    無法下載圖示 校內:2025-08-19公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE