簡易檢索 / 詳目顯示

研究生: 吳育星
Wu, Yu-Sing
論文名稱: 含二乙二醇乙醚基芳香1,2,4-三氮唑衍生物的合成、鑑定與光電性質
Aromatic 1,2,4-Triazole with Diethylene Glycol Monoethyl Ether as Peripheral Groups: Synthesis,Characterization and Its Electron-Transporting Application in OLEDs
指導教授: 陳雲
Chen, Yun
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 82
中文關鍵詞: 高分子發光二極體電子注入/傳輸層三氮唑
外文關鍵詞: PLEDs, electron-injection/transport layer, aromatic 1,2,4-triazole
相關次數: 點閱:60下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 高分子發光二極體(PLEDs)藉由從陽極、陰極分別注入電洞及電子在發光層中再結合而發出不同光色。電子與電洞注入及傳輸速率之平衡對發光有非常大的影響,因此在許多研究利用多層元件來平衡電荷傳輸以達到高效率發光。傳統多層元件大部分以蒸鍍來製備,但蒸鍍需要在高溫下操作,且製備麻煩、耗費成本。故開發可用濕式製程成膜的電子注入/傳輸材料將可以降低成本且利於元件製作。
    本研究利用親核基取代反應合成具有二乙二醇乙醚基之1,2,4-三氮唑化合物(3OTAZ)作為電子注入/傳輸層材料,以核磁共振光譜(1H-NMR、COSY、NOESY)、元素分析儀(EA)鑑定其結構。並探討3OTAZ之熱性質、光學性質、電化學性質、成膜表面性質與元件性質。3OTAZ具有高熱裂解溫度(Td = 376 oC),薄膜態UV/Vis最大吸收和螢光光譜(PL)放光分別在286 nm和358 nm。3OTAZ分子具有三氮唑基團,其具低LUMO能階(-2.88 eV)及低HOMO能階(-5.86 eV),後者能有效阻隔電洞。3OTAZ可以使用旋轉塗佈的方式製備薄膜,薄膜表面最佳粗糙度(RMS roughness = 1.65 nm)稍高於未添加3OTAZ的發光層薄膜表面粗糙度(RMS roughness = 1.27 nm)。發光元件結構以3OTAZ當電子注入/傳輸層[ITO/PEDOT:PSS/HY-PPV (80 nm)/3OTAZ (60 nm)/Al (90 nm)],沒有電子注入/傳輸層之元件最大亮度為230 cd/m2及最大電流效率為0.02 cd/A,色度座標為(0.35, 0.60),而有電子注入/傳輸層之元件最大亮度為2968 cd/m2及最大電流效率為0.91 cd/A,色度座標為(0.41, 0.57),最大亮度及效率皆高於未添加3OTAZ時。研究結果顯示3OTAZ具有電子注入/傳輸及電洞阻隔特性,有效改善元件的發光效率,而且可以旋轉塗佈方式加工成膜,具有成為電子注入/傳輸材料的潛力。

    An efficient electron-transporting aromatic 1,2,4-triazole core containing peripheral diethylene glycol monoethyl ethers (3OTAZ) was synthesized by nucleophilic aromatic substitution reaction. The 3OTAZ were fully characterized by 1H-NMR, elemental analysis, DSC, TGA, optical spectra, cyclic voltammetry, and AFM. It was then employed as electron-injection/transport layer (EIL/ETL) to evaluate its potential application in polymer light-emitting diodes (PLEDs). The 3OTAZ exhibited good thermal stability with thermal decomposition temperature (5% weight loss) being above 376 oC in nitrogen atmosphere. In film state, it showed absorption and photo luminescence (PL) peaks at 286 nm and 358 nm respectively. The 3OTAZ should increase electron-transport and hole-block ability attributable to its aromatic 1,2,4-triazole core. The LUMO levels of 3OTAZ (-2.88 eV) is close to that of emitting HY-PPV (-2.8 eV), facilitating the transport of electron. The maximum brightness and current efficiency of multi-layer PLEDs [ITO/PEDOT:PSS/HY-PPV(80 nm)/3OTAZ(60 nm)/Al(90 nm)], with 3OTAZ as electron injection/transport layer were 2968 cd/m2 and 0.91 cd/A respectively, which are much better than those without 3OTAZ (230 cd/m2, 0.02 cd/A). The performance enhancement has been attributed mainly to electron injection/transport and hole-block characteristics of 3OTAZ layer. Current results indicate that the 3OTAZ is not only an efficient electron injection/transport material but also applicable in fabricating multilayer PLEDs by wet processes such as spin-coating.

    摘要 I Abstract III 致謝 IV 目錄 V 流程目錄 VIII 表目錄 IX 圖目錄 X 第一章 序論 1 1-1前言 1 1-2理論基礎 4 1-2-1共軛導電高分子 4 1-2-2螢光理論 7 1-2-3影響螢光強度的因素 9 1-2-4能量轉移 11 1-2-5分子間激發態 12 1-3元件發光原理及結構 14 1-3-1發光原理 14 1-3-2單層元件 15 1-3-3多層元件 17 1-3-4影響OLED發光效率的因素 18 1-4有機發光二極體未來研究方向 19 第二章 文獻回顧 20 2-1 有機電激發光材料的分類 20 2-2共軛高分子發光材料 21 2-3電洞注入/電洞傳輸材料 22 2-4電子傳輸材料 23 2-5可濕式製程 24 2-6研究動機 25 第三章 實驗內容 26 3-1實驗裝置與設備 26 3-2鑑定儀器 27 3-3物性及光電特性測量儀器 28 3-4藥品及材料 32 3-5合成步驟與結果 34 3-5-1單體合成 35 3-6反應原理 37 3-7循環伏安實驗 38 3-8元件設計與製作 41 第四章 結果與討論 45 4-1單體之合成與鑑定 46 4-1-1核磁共振光譜(NMR) 46 4-1-2紅外光譜(FT-IR) 47 4-2熱性質分析 53 4-2-1微差式掃描熱卡計(DSC) 53 4-2-2熱重分析 53 4-3光學性質 56 4-3-1 UV/Vis吸收光譜和PL發光光譜 56 4-4電化學性質分析 59 4-5有機材料成膜性探討 62 4-6元件性質分析 65 4-6-1元件結構能階 65 4-6-2電流密度(J)-電壓(V)-亮度(L)特性67 4-6-3 Electron-only元件 72 4-6-4 Hole-only元件 74 4-6-5 電子注入能力影響 76 第五章 結論 78 參考文獻 80

    [1] M. Pope, H. Kallmann, P. Magnante, J. Chem. Phys. 1963, 38, 2042.
    [2] C. W. Tang, S. A. Vanslyke, Appl. Phys. Lett.1987, 51, 913
    [3] J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns, A. B. Holmes, Nature 1990, 347, 539.
    [4] 段啟聖,化工資訊雜誌與商情,民國94年8月,第26期, P.40.
    [5] 郭昭輝,塑膠資訊雜誌,民國91年10月.
    [6] D. A. Skoog, F. J. Holler, S. R. Crouch, Principles of Instrumental Analysis. 6th ed.; Thomson Brooks/Cole: Belmont, CA, 1997.
    [7] J. R. Lakowicz, Principles of Fluorescence Spectroscopy. 3rd ed.; Springer: New York, 2006.
    [8] Z. H. Kafafi, Organic Electroluminescence. CRC Press, Taylor & Francis: Boca Raton, FL, 2005.
    [9] V. May, O. Kühn, Charge and Energy Transfer Dynamics in Molecular Systems. 2nd, rev. and enl. ed.; Wiley-VCH; John Wiley: Weinheim Chichester, 2004.
    [10] L. Akcelrud, Progress in Polymer Science 2003, 28, 875.
    [11] T.-Q. Nguyen, I. B. Martini, J. Liu, B. J. Schwartz, J. Phys. Chem. B 1999, 104, 237.
    [12] K. Walzer, B. Maennig, M. Pfeiffer, K. Leo, Chem. Rev. 2007, 107, 1233.
    [13] 黃孝文,陳雲;化工資訊月刊,第15卷第3期,P.8,2001年.
    [14] 葉昆明,陳雲;科學發展,第385期,P.58,2005年1月.
    [15] 陳信宏,陳雲;中工高雄會刊,第3期,P.72,2006年.
    [16] 楊素華;光訊雜誌,第98 期,P.29,2002 年10 月.
    [17] 陳金鑫,黃孝文;有機電激發光材料與元件,五南, 2005年.
    [18] Y. Shirota, H. Kageyama, Chem.Rev.2007, 107, 953.
    [19] M. Wohlgenannt, K. Tandon, S. Mazumdar, S. Ramasesha, Z. V. Vardeny, Nature 2001, 409, 494.
    [20] 陳金鑫,光訊雜誌,第65期,P.12,民86年4月
    [21] J. L. Segura, Acta. Polym. 1998, 49, 319.
    [22] J. J. M. Halls, C. A. Walsh, N. C. Greenham, N. C. Greenham, E. A. Marseglia, R. H. Friend, S. C. Moratti, Nature. 1995, 376, 498.
    [23] Y. Yang, A. J. Heeger, Nature 1990, 374, 539.
    [24] H. A. M. van Mullekom, J. A. J. M. Vekemans, E. E. Havinga, E. W.Meijer, Mater. Sci. Eng. 2001, 32, 1.
    [25] J. S. Gmeinr, M. M. Karg, W. P. Rieß, M. S. Strohriegl, Acta. Polym. 1993, 44, 201.
    [26] G. Gustafsson, Y. Cao, G. M. Treacy, N. C. Klavetter, A. J. Heeger, Nature 1992, 357, 477.
    [27] A. J. Heeger, J. Phys. Chem. B 2001, 105, 8475.
    [28] 陳金鑫,黃孝文;有機電激發光材料與元件;五南,2005年
    [29] R. G. Kepler, Phys. Rev. 1960, 119, 1226.
    [30] E. H. Martin, J. Hirsch, Solid State Commun. 1969, 7, 783.
    [31] G. Horowitz, Adv. Mater. 1998, 10, 365.
    [32] A. Babel, S. A. Jenekhe, J. Am. Chem. Soc. 2003, 125, 13656.
    [33] X. Zhang, S. A. Jenekhe, Macromolecules 2000, 33, 2069.
    [34] S. A. Jenekhe, S. Yi, Appl. Phys. Lett. 2000, 77, 2635.
    [35] G. G. Malliaras, J. C. Scott, ibib 1998, 83, 5399.
    [36] D. Ma, J. Fang, Organic Electronic Devices 2013, 52, 3417
    [37] S. R. P. Silva, J. of Materials Chem. C 2013, 1, 3347
    [38] R. N. Johnson, A. G. Farnham, R. A. Clendinning, W. F. Hale, C. N. Merriam, J. Polym. Sci. PartA-1 1967, 5, 2375.
    [39] K. R. Carter, H. Jonsson, R. Twieg, R. D. Miller, J. L. Hedrick, Polym. prepr. (Am. Chem. Soc., Div. Polm. Chem. ) 1992, 33 (1), 388.
    [40] W. H. Beecer, J. K. Stille, Macromolecules 1979, 12, 1033.
    [41] K. Kim, S. Y. Park, Y. J. Kim, N. Kim, S. I. Hong, H. Sasabe, J. Appl. Polym. Sci. 1992, 46, 1.
    [42] F. A. Bottino, G. Di Pasquale, A. Pollicino, J. Polym. Sci., Part A: Polym. Chem. 1995, 33, 843.
    [43] J. L. Hedrick, J. W. Labadie, Macromolecules 1990, 23, 1561.
    [44] H. R. Kricheldorf, G. Schwartz, J. Erxleben, Makromol. Chem. 1988, 189, 2255.
    [45] J. L. Hedrick and R. Twieg, Macromolecules 1992, 25, 2021.
    [46] J.F. Rusling, S. L. Suib, Adv. Mater. 1994, 6, 922.
    [47] M. M. Alam, C. J. Tonzola, S. A. Jenekhe, Macromolecules 2003, 36, 6577
    [48] “Taiwan-US-Canada Sci-Tech Newsbrief” 2002, 10, No.4
    [49] T. H. Lee, J. C. A. Huang, T. F. Guo, T. C. Wen,Y. S. Huang, C. C. Tsou, C. T. Chung, Y. C. Lin, Y. J. Hsu, Adv. Funct. Mater. 2008, 16, 3036.
    [50] L. Scholer, K. Seibel, K. Panczyk, M. Bohm, Microelectron. Eng. 2009, 86, 1502.
    [51] K. Manabe, W. Hu, M. Matsumura, H. Naito, J. Appl. Phys. 2003, 94, 2024.
    [52] R. Steyrleuthner, S. Bange, D. Neher, J. Appl. Phys. 2009, 105, 064509.
    [53] H. H. Lu, Y. S. Ma, N. J. Yang, G. H. Lin, Y. C. Wu, S. A. Chen, J. Am. Chem. Soc. 2011, 133, 9634.
    [54] Y. H. Niu, A. K.-Y. Jen, C. F. Shu, J. Phys. Chem. B 2006, 110,6010.

    無法下載圖示 校內:2018-08-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE