| 研究生: |
林沛 LIN, PEI |
|---|---|
| 論文名稱: |
具有鑽石形凹腔及擋板之微流道中的流體混合 Fluid mixing in microchannels with diamond-shaped cavities and baffles |
| 指導教授: |
吳志陽
Wu, C.Y. |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 107 |
| 中文關鍵詞: | 微流體 、微流道 、實驗室晶片 、鑽石形凹腔 、擋板 |
| 外文關鍵詞: | baffles, diamond-shaped cavities, LOC, microchannel, microfluidic |
| 相關次數: | 點閱:130 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究將具有鑽石形凹腔與擋板加到T形微混合器,對於流體混合效率的影響。本文預期加入鑽石形凹腔及擋板後,能使微混合器內流體流動的複雜化及提高混合效率,並以實驗及數值方法來驗證。本研究中使用軟體CFD-ACE+(CFD Research Corporation)模擬在微混合器中的流動與擴散情形。而製作微混合器時,先將SU-8厚膜光阻以微影製程在矽晶圓上製作微型混合器之母模,再用PDMS翻模製成微混合器,然後,以載玻片貼合PDMS,最後接上矽膠管及兩個微量式注射幫浦組合成完整的流體流動系統。之後用包括光學顯微鏡和影像擷取軟體的影像擷取系統紀錄流體在流道中的混合情形。實驗擷取的流體混合圖片將與模擬的結果作比較,並計算混合指標。結果顯示,提升混合效率的方法有:(1) 增加凹腔與擋板的數目。(2) 在具有凹腔與擋板的流道形狀設計下,提高工作流體雷諾數,但是具有鑽石形凹腔沒有擋板的流道形狀設計下,此情形卻相反。(3) 具有凹腔與擋板的流道形狀設計下,使用小型鑽石形凹腔與低擋板,是較符合混合效率與能量損失之間折衷的選擇。但是具有鑽石形凹腔沒有擋板的流道形狀設計下,使用大型鑽石形凹腔是較好的選擇。
In this work, we investigate the effects of adding baffles and diamond-shaped cavities to a T-type micromixer on the fluid mixing. We expect that the baffles and diamond-shaped cavities make the fluid flow in the micromixer more complicated and enhance mixing, and examine the effects by experimental and numerical method. This work uses the software, CFD-ACE+ (CFD Research Corporation), to simulate the flow and diffusion in the micromixers. To fabricate the micromixer, the SU-8 thick film photoresist on the silicon wafer is used to fabricate the structure of the micromixers by microlithography. Casting of PDMS is followed to mold the SU-8 pattern. Then , we bond the patterned PDMS with a cover layer of glass. The fluid flow system is consisted of the micromixer with pipes and two micro-syringe pumps. The visualization of the mixing process of the mixing fluids are obtained by an image capture system, including microscope and picture-catching software. The photographs of mixing between two fluids are compared with the results obtained by simulations. Next, the mixing index is calculated. The results show that the mixing efficiency can be improved by (i) increasing the numbers of the baffles and the cavities. (ii) increasing the Reynolds number. (iii) using small cavities and long baffles or using large cavities without baffles.
1. A. Manz, N. Graber and H. M. Widmer, 1990. “Miniaturized total analysis systems: a novel concept for chemical sensing,” Sensors and Actuator B1: Chemical, Vol. 1, pp. 244-248.
2. J. J. L. Higdon, 1985. “Stokes flow in arbitrary two-dimensional domains:shear flow over ridges and cavities,” Journal of Fluid Mech, Vol. 159. pp.195-226.
3. J. P. Shelby and D. T. Chiu, 2004. “Controlled rotation of biological micro-and nano-particles in microvortices,” Lab Chip, Vol. 4. pp168-170.
4. Z. T. F. Yu, Y. K. Lee, M. Wang and Y. Zohar, 2005. “Fluid Flows in Microchannels With Cavities,” Journal of Micro-electro-mechanical systems, Vol. 14. pp. 1386-1398.
5. M. Liu, C. Xie, X. Zhang and Y. Chen, 2008. “Numerical simulation on micromixer based on synthetic jet,” Acta Mech, Vol 24, pp. 629-636.
6. J. Soulages, M. S. N. Oliveira, P. C. Sousa, M. A. Alves, and G. H. McKinley, 2009. “Investigating the stability of viscoelastic stagnation flows in T-shaped microchannels,” Journal of Non-Newtonian Fluid Mechanics , doi:10.1016/j.jnnfm.2009.06.002.
7. F. M. White, 2006. Viscous fluid flow, ed., McGraw Hill, New York.
8. S. Lee, H. Y. Lee, I. F. Lee and C. Y. Tseng, 2004. “Ink diffusion in water,” European Journal of Physics, Vol. 25, pp. 331-336.
9. L. H. Lu, K. S. Ryu and C. Liu, 2002. “ A magnetic microstirrer and array for microfluidic mixing,” Journal of Micro-electro-mechanical Systems, Vol. 11, pp. 462-469.