簡易檢索 / 詳目顯示

研究生: 林沛
LIN, PEI
論文名稱: 具有鑽石形凹腔及擋板之微流道中的流體混合
Fluid mixing in microchannels with diamond-shaped cavities and baffles
指導教授: 吳志陽
Wu, C.Y.
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 107
中文關鍵詞: 微流體微流道實驗室晶片鑽石形凹腔擋板
外文關鍵詞: baffles, diamond-shaped cavities, LOC, microchannel, microfluidic
相關次數: 點閱:130下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究將具有鑽石形凹腔與擋板加到T形微混合器,對於流體混合效率的影響。本文預期加入鑽石形凹腔及擋板後,能使微混合器內流體流動的複雜化及提高混合效率,並以實驗及數值方法來驗證。本研究中使用軟體CFD-ACE+(CFD Research Corporation)模擬在微混合器中的流動與擴散情形。而製作微混合器時,先將SU-8厚膜光阻以微影製程在矽晶圓上製作微型混合器之母模,再用PDMS翻模製成微混合器,然後,以載玻片貼合PDMS,最後接上矽膠管及兩個微量式注射幫浦組合成完整的流體流動系統。之後用包括光學顯微鏡和影像擷取軟體的影像擷取系統紀錄流體在流道中的混合情形。實驗擷取的流體混合圖片將與模擬的結果作比較,並計算混合指標。結果顯示,提升混合效率的方法有:(1) 增加凹腔與擋板的數目。(2) 在具有凹腔與擋板的流道形狀設計下,提高工作流體雷諾數,但是具有鑽石形凹腔沒有擋板的流道形狀設計下,此情形卻相反。(3) 具有凹腔與擋板的流道形狀設計下,使用小型鑽石形凹腔與低擋板,是較符合混合效率與能量損失之間折衷的選擇。但是具有鑽石形凹腔沒有擋板的流道形狀設計下,使用大型鑽石形凹腔是較好的選擇。

    In this work, we investigate the effects of adding baffles and diamond-shaped cavities to a T-type micromixer on the fluid mixing. We expect that the baffles and diamond-shaped cavities make the fluid flow in the micromixer more complicated and enhance mixing, and examine the effects by experimental and numerical method. This work uses the software, CFD-ACE+ (CFD Research Corporation), to simulate the flow and diffusion in the micromixers. To fabricate the micromixer, the SU-8 thick film photoresist on the silicon wafer is used to fabricate the structure of the micromixers by microlithography. Casting of PDMS is followed to mold the SU-8 pattern. Then , we bond the patterned PDMS with a cover layer of glass. The fluid flow system is consisted of the micromixer with pipes and two micro-syringe pumps. The visualization of the mixing process of the mixing fluids are obtained by an image capture system, including microscope and picture-catching software. The photographs of mixing between two fluids are compared with the results obtained by simulations. Next, the mixing index is calculated. The results show that the mixing efficiency can be improved by (i) increasing the numbers of the baffles and the cavities. (ii) increasing the Reynolds number. (iii) using small cavities and long baffles or using large cavities without baffles.

    摘要 i Abstract ii 誌謝 iii 目錄 iv 圖目錄 vii 符號說明 xx 第一章 緒論 1 1-1 研究背景 1 1-2 文獻回顧 1 1-3 研究動機 2 1-4 本文架構 2 第二章 理論與數值模擬 3 2-1 基本假設 3 2-2 統御方程式 3 2-3 無因次分析 4 2-4 邊界條件 6 2-5 數值模擬 12 2-5-1 CFD-GEOM幾何形狀與網格建立 12 2-5-2 CFD-ACE+模擬計算求解 12 2-5-3 CFD-VIEW後處理 13 2-6 混合指標 13 2-7 微混合器的幾何尺寸 13 第三章 微型混合器的製作與觀測其流動情形 15 3-1 光罩製作 15 3-2 母模製作 15 3-3 翻模製作微混合器 18 3-4 PDMS成品貼合與管線接合 18 3-5 工作流體與微量式注射幫浦 19 3-6 微混合器實驗前置作業 19 3-7 影像擷取 19 第四章 結果與討論 20 4-1 簡介 20 4-2 網格測試 20 4-3 實驗結果與數值模擬結果之比較 20 4-4 T形流道加入鑽石形凹腔的影響 21 4-5 T形流道具有四個大型鑽石形凹腔和四個低擋板 對於混合所造成的影響 23 4-6 T形流道具有四個大型鑽石形凹腔搭配高低不同檔板 對混合的影響 26 4-7 T形流道具有不同數目之擋板與鑽石形凹腔 對混合的影響 28 4-8 T形流道具有擋板與不同大小之四個鑽石形凹腔 對於混合的影響 28 4-9 各種微混合器設計之混合指標與壓降探討 29 第五章 結論與未來展望 32 5-1 結論 32 5-2 未來展望 32 參考文獻 33

    1. A. Manz, N. Graber and H. M. Widmer, 1990. “Miniaturized total analysis systems: a novel concept for chemical sensing,” Sensors and Actuator B1: Chemical, Vol. 1, pp. 244-248.
    2. J. J. L. Higdon, 1985. “Stokes flow in arbitrary two-dimensional domains:shear flow over ridges and cavities,” Journal of Fluid Mech, Vol. 159. pp.195-226.
    3. J. P. Shelby and D. T. Chiu, 2004. “Controlled rotation of biological micro-and nano-particles in microvortices,” Lab Chip, Vol. 4. pp168-170.
    4. Z. T. F. Yu, Y. K. Lee, M. Wang and Y. Zohar, 2005. “Fluid Flows in Microchannels With Cavities,” Journal of Micro-electro-mechanical systems, Vol. 14. pp. 1386-1398.
    5. M. Liu, C. Xie, X. Zhang and Y. Chen, 2008. “Numerical simulation on micromixer based on synthetic jet,” Acta Mech, Vol 24, pp. 629-636.
    6. J. Soulages, M. S. N. Oliveira, P. C. Sousa, M. A. Alves, and G. H. McKinley, 2009. “Investigating the stability of viscoelastic stagnation flows in T-shaped microchannels,” Journal of Non-Newtonian Fluid Mechanics , doi:10.1016/j.jnnfm.2009.06.002.
    7. F. M. White, 2006. Viscous fluid flow, ed., McGraw Hill, New York.
    8. S. Lee, H. Y. Lee, I. F. Lee and C. Y. Tseng, 2004. “Ink diffusion in water,” European Journal of Physics, Vol. 25, pp. 331-336.
    9. L. H. Lu, K. S. Ryu and C. Liu, 2002. “ A magnetic microstirrer and array for microfluidic mixing,” Journal of Micro-electro-mechanical Systems, Vol. 11, pp. 462-469.

    下載圖示 校內:2012-09-29公開
    校外:2012-09-29公開
    QR CODE