簡易檢索 / 詳目顯示

研究生: 吳婉寧
Wu, Wan-Ning
論文名稱: 以理論計算研究胍類衍生物的超共軛效應
Theoretical Studies of Hyperconjugation in Guanidine Derivaties
指導教授: 黃福永
Huang, Fu-Yung
王小萍
Wang, Shao-Pin
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 157
中文關鍵詞: 胍雙胍超共軛效應負超共軛效應二甲基雙胍
外文關鍵詞: guanidine, biguanide, hyperconjugation, negative hyperconjugation, N,N-dimethylated biguanide
相關次數: 點閱:131下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 以胍(guanidine)與雙胍(biguanide)作為母體,將其胺基上的氫原子置換成甲基(methyl group)與三氟甲基(trifluoromethyl group),採用DFT B3LYP/6-31G(d)計算方法,分析胍類與雙胍類分子整體的能量,探討HOMO軌域以及氮原子的負超共軛。胍與雙胍HOMO軌域的主要成分皆含πC-N以及LP(N),從取代基BO貢獻度的多寡,得知引入甲基會發生超共軛效應,三氟甲基的引入則產生負超共軛效應。除了取代基引起的負超共軛,母體主結構BO之間也有負超共軛效應,LP(N) donor至π*C-N,並藉由二級微擾理論的E(2)值去分析負超共軛穩定LP(N)的能力,發現甲基系列的衍生物其母體自身負超共軛得到的E(2)值高於甲基,因此母體的自身負超共軛具有較強的穩定能力;對於三氟甲基系列的衍生物,LP(N) donor到三氟甲基σ*C-F得到的E(2)值和donor到母體自身π*C-N的E(2)值都相當高,無論是三氟甲基引起的負超共軛或是母體自身的負超共軛,此二者對於LP(N)的穩定性都很重要。
    以胍分子為母體:從甲基σC-H與σ*C-H的貢獻度可知,甲基胍衍生物因超共軛效應,其HOMO能量大致上成逐漸上升的趨勢,唯G-4CH3例外;三氟甲基胍衍生物則因負超共軛效應,使得HOMO的能量逐漸降低。
    雙胍的部分,從分子結構圖與HOMO軌域電子雲分布圖可知雙胍分子有類似C2的對稱,且分子中心的氮原子銜接左右兩側πC-N的電子雲。陸續引入甲基後,分子中心的氮原子貢獻度逐漸降低甚至出現節面,原本因氮原子銜接一起的πC-N被分成兩個獨立的πC-N系統。能量方面,單一支甲基取代的衍生物,其HOMO能量上升,與胍的經驗相同;多甲基取代的雙胍衍生物其HOMO能量低於母體,此現象與分子中心的氮原子有關,母體中此支BO的能量(-6.62 eV)高於兩側胺基的氮原子能量(-8.24 eV),隨著甲基的引入高能量的BO貢獻度降低,HOMO能量因此而下降。
    此外,四種甲基雙胍衍生物,其中二甲基雙胍是第二型糖尿病患者最常使用的口服藥物,Metformin。我們將利用Weinhold’s NBO method從共軛的觀點解釋為何二甲基雙胍的HOMO能量低於雙胍分子。

    Methylation performed on guanidine would destabilize the energy of the highest occupied molecular orbital (HOMO), as well as found earlier for benzene. The N,N-dimethylated biguanide is known as Metformin, which has currently replaced guanidine and biguanide for biomedical use in treating type-2 diabetes. Di-methylation, however, result in a node-like Nc in the HOMO plots, namely the HOMO of biguanide is separated into two fragmental π-systems on both ends in Metformin. Moreover, the HOMO-energy in Metformin is unexpected lower than that of the parent biguanide. This observation can be understood based on theoretical studies employing the natural bond orbital method: exclusion of the high-lying lone-pair bond orbital on Nc leads to a stabilized HOMO on going from biguanide to metformin. This might underline the biomedical use of metformin for reducing side-effects found for biguanide.

    中文摘要i 英文延伸摘要iii 誌謝vii 目錄viii 表目錄xi 圖目錄xv 第一章 緒論1 第二章 理論背景3 2-1 糖尿病的介紹3 2-2 口服降血糖藥,Metformin的反應機制5 2-3 Metformin的歷史6 2-4 共振(Resonance)8 2-5 誘導效應(Inductive effect)與共振效應(Resonance effect) 9 2-6 超共軛(Hyperconjugation)10 2-7 負超共軛效應 (Negative hyperconjugation)11 第三章 計算原理與方法12 3-1 計算原理12 3-1-1 HF理論(Hartree-Fock Theory)12 3-1-2 密度泛函理論(Density Functional Theory)14 3-1-3 基底16 3-1-4 分裂(Split)基底17 3-1-5 極化函數(Polarization function)17 3-1-6 擴散函數(Diffuse function) 18 3-1-7 天然鍵結軌域(Nature bond orbital, NBO)18 3-2 選用軟體-Gaussian 03 19 3-3 Gauss View20 3-4 計算指令20 3-5 選用基底20 第四章 結果與討論22 4-1 藥物分子的理論計算23 4-1-1 實驗所使用的分子23 4-1-2 胍類分子的NBO分析26 4-1-3 雙胍類分子的NBO分析50 4-2 分子的負超共軛效應73 4-2-1 利用E(2)值分析負超共軛74 4-2-2 依據氮原子孤對電子的能量將衍生物作鹼性排序87 4-3 取代基與HOMO能量之間的關係94 4-3-1 衍生物分子的鹼性次序95 4-3-2 分析衍生物分子HOMO能量的變化105 4-4 探討甲基與三氟甲基取代基效應的差異118 4-5 胍與雙胍分子的比較125 4-6 雙胍與二甲基雙胍分子的比較128 第五章 結論136 參考文獻138 附錄1 分子的最佳化結構圖141 附錄2 電子雲分布圖149 附錄3 E(2)值157

    1.T.-J. Chang, Y.-D. Jiang, C.-H. Chang, C.-H. Chung, N.-C. Yu and L.-M. Chuang, Journal of the Formosan Medical Association, 2012, 111, 605.
    2.S. E. Inzucchi, R. M. Bergenstal, J. B. Buse, M. Diamant, E. Ferrannini, M. Nauck, A. L. Peters, A. Tsapas, R. Wender and D. R. Matthews, Position Statement of the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD), 2012, 35, 1364.
    3.A. Garber, M. Abrahamson, J. Barzilay, L. Blonde, Z. Bloomgarden, M. Bush, S. Dagogo-Jack, M. Davidson, D. Einhorn, W. Garvey, G. Grunberger, Y. Handelsman, I. Hirsch, P. Jellinger, J. McGill, J. Mechanick, P. Rosenblit, G. Umpierrez and M. Davidson, Endocrine Practice, 2013, 19, 1.
    4.U. K. P. D. S. Group, The Lancet, 1998, 352, 854.
    5.A. Decensi, M. Puntoni, P. Goodwin, M. Cazzaniga, A. Gennari, B. Bonanni and S. Gandini, Cancer Prev Res (Phila), 2010, 3, 1451.
    6.M.-S. Lee, C.-C. Hsu, M.-L. Wahlqvist, H.-N. Tsai, Y.-H. Chang, Y.-C. Huang, BMC Cancer, 2011, 11, 20.
    7.D. Shobac, D. G. Gardner, Greenspan's basic & clinical endocrinology, 9th ed, New York: McGraw-Hill Medical, 2011, Chapter 17
    8.Diabetes Fact sheet. WHO. October 2013 (25 March 2014).
    9.RSSDI textbook of diabetes mellitus. Rev. 2nd ed, New Delhi: Jaypee Brothers Medical Publishers, 2012.
    10.M. Grzybowska , J. Bober, M. Olszewska , Z. C. Medycznej, Postepy Higieny i Medycyny Doswiadczalnej (Online), 2011, 65, 277.
    11.M. R. Owen, E. Doran, A. P. Halestrap, Biochem J, 2000, 348, 607.
    12.B. Viollet, B. Guigas, N. Sanz Garcia, J. Leclerc, M. Foretz, F. Andreelli, Clinical Science (London, England : 1979), 2012, 122, 253.
    13.R. A. Miller, Q. Chu, J. Xie, M. Foretz, B. Viollet and M. J. Birnbaum, Nature, 2013, 494, 256.
    14.R. J. Shaw, K.A. Lamia, D. Vasquez, Science, 2005, 310, 1642.
    15.M. Foretz, S. Hébrard, J. Leclerc, J Clin Invest, 2010, 120, 2355.
    16.C. J. Bailey and C. Day, Practical Diabetes International, 2004, 21, 115.
    17.American Diabetes Association, Diabetes Care, 2011, 34, S11.
    18.P. v. R. Schleyer, A. J. Kos, Tetrahedron, 1983, 39, 1141.
    19.R. S. Mulliken, The Journal of Chemical Physics, 1933, 1, 492.
    20.T. W. G. Solomons, Organic Chemistry revised printing, John Wiley&Sons Inc, New York, 2000.
    21.F. A.Carey, R. J. Sundberg, Advanced Organic Chemistry, 4th ed, Kluwer Academic/Plenum Publishers Press:New York, 2000.
    22.R. S. Mulliken, The Journal of Chemical Physics, 1933, 1, 492.
    23.R. S. Mulliken, The Journal of Chemical Physics, 1935, 3, 517.
    24.R. S. Mulliken, The Journal of Chemical Physics, 1939, 7, 339.
    25.O. J. Sovers, C. W. Kern, R. M. Pitzer and M. Karplus, The Journal of Chemical Physics, 1968, 49, 2592.
    26.L. Goodman, H. Gu, The Journal of Chemical Physics, 1998, 109, 72.
    27.L. Goodman, H. Gu, V. Pophristic, The Journal of Chemical Physics, 1999, 110, 4268.
    28.L.Goodman, V. Pophristic, F. Weinhold, Acc. Chem. Res, 1999, 32, 983.
    29.V. Pophristic and L. Goodman, Nature, 2001, 411, 565.
    30.G. W. Wheland, The Journal of Chemical Physics, 1934, 2, 474.
    31.A. E. Reed, L. A. Curtiss, F. Weinhold, Chem. Rev., 1988, 88, 899.
    32.R. Hoffmann, L. Radom, J. A. Pople, P. v. R. Schleyer, W. J. Hehre, L. Salem, Journal of the American Chemical Society, 1972, 94, 6221.
    33.P. v. R. Schleyer, A. J. Kos, Tetrahedron, 1983, 39, 1141.
    34.P. Hohenberg, W. Kohn, Physical Review, 1964, 136, B864.
    35.W. Kohn, L. J. Sham, Phys. Rev., 1965, 140, A1133.
    36.A. D. Becke, The Journal of Chemical Physics, 1993, 98, 5648.
    37.A. D. Becke, Phys. Rev. A, 1988, 38, 3098.
    38.C. Lee, W. Yang, R. G. Parr, Physical Review B, 1988, 37, 785.
    39.L. Goodman, V. Pophristic, F. Weinhold, Acc. Chem. Res., 1999, 32, 983.
    40.B. Reimann, K. Buchhold, S. Vaupel, B. Brutschy, Z. Havlas, V. Špirko, P. Hobza, The Journal of Physical Chemistry A, 2001, 105, 5560.
    41.S. J. Wilkens, W. M. Westler, F. Weinhold, J. L. Markley, J. Am. Chem. Soc., 2002, 124, 1190.
    42.P. Hobza, J. Šponer, E. Cubero, M. Orozco, F. J. Luque, The Journal of Physical Chemistry B, 2000, 104, 6286.
    43.N. W. Mitzel, U. Losehand, J. Am. Chem. Soc., 1998, 120, 7320.
    44.S. P. Ananthavel, M. Manoharan, Chem. Phys., 2001, 269, 49.
    45.A. E. Reed, F. Weinhold, L. A. Curtiss, D. J. Pochatko, The Journal of Chemical Physics, 1986, 84, 5687.
    46.H. Anane, A. Boutalib, I. Nebot-Gil, F. Tomás, The Journal of Physical Chemistry A, 1998, 102, 7070.
    47.W. Yang, D. G. Drueckhammer, J. Am. Chem. Soc., 2001, 123, 11004.
    48.B. Miehlich, A. Savin, H. Stoll, H. Preuss, Chem. Phys. Lett., 1989, 157, 20.
    49.G. L. Miessler, D. A. Tarr, Inorganic Chemistry, 2nd ed, Pearson Prentice Hall, 1991.
    50.R. H. Petrucci, W. S. Harwood, F. G. Herring, General Chemistry, 8th ed, Pearson Prentice Hall, 2002.
    51.G. N. Lewis, Valence and the Structure of Atoms and Molecules, The Chemical Catalog Company, 1923.

    下載圖示 校內:2021-07-26公開
    校外:2021-07-30公開
    QR CODE