簡易檢索 / 詳目顯示

研究生: 張瑞紘
Chang, Jui-Hung
論文名稱: 單旋轉偏振片應用於光旋轉角度之研究
Study of Optical Rotation Angle by a New Polarimetry using One-rotating Polarizer
指導教授: 羅裕龍
Lo, Yu-Lung
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 54
中文關鍵詞: 偏振儀光旋轉角反正切函數法
外文關鍵詞: Polarimetry, Optical rotation angle, Arctangent algorithm
相關次數: 點閱:74下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Abstract i 中文摘要 ii 致謝 iii Table of content iv List of Figures vi Chapter 1 Introduction 1 Chapter 2 Low scattering effect measurement 4 2.1. Methodology 4 2.1.1 Arctangent algorithm by Fourier expansion analysis 6 2.1.2 Lock-in algorithm 7 2.2 Simulation for the ideal condition 8 2.3 Error analysis on non-perfection of polarizer and light source 11 2.4 Error analysis on scattering 14 2.4.1 Error analysis on low scattering 15 2.4.2 Error analysis on high scattering 18 2.5 Experimental setup 19 2.6 Experimental results 21 Chapter 3 High scattering effect measurement 25 3.1 Derivation of scattering parameter formula 26 3.2 Simulation for scattering parameter 30 3.3 Scattering parameter experiment 33 3.4 Theoretical aspects of partial least square regression (PLSR) 36 3.5 Glucose concentration measurement with turbid medium 38 3.6 Glucose concentration measurement with three different speed 43 Chapter 4 Conclusions and Suggestions 48 4.1 Conclusions 48 4.2 Future work 50 References 51

    [1] P. Saeedi, I. Petersohn, P. Salpea et al., “Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: results from the International Diabetes Federation Diabetes Atlas, 9th edition,” Diabetes Research and Clinical Practice, Vol. 157, article 107843 (2019).
    [2] D.B. Tadesse, G.T. Gebrewahd, A Hailay et al., “Diabetic Peripheral Neuropathy in Ethiopia: A Systematic Review and Meta-Analysis,” Journal of Diabetes Research, Vol. 2021, 5304124 (2021).
    [3] T. Vo-Dinh, Biomedical Photonics Handbook: Biomedical Diagnostics, ISBN 9781420085150 (2014).
    [4] P. Mukherjee, Measuring chemical and mechanical properties of biological tissue with Mueller matrix polarimetry, Ph.D. Dissertation, Utsunomiya University (2019).
    [5] N.C. Dingari et al., “Investigation of the specificity of Raman spectroscopy in non-invasive blood glucose measurements,” Analytical and Bioanalytical Chemistry, Vol. 400, pp. 2871-2880 (2011).
    [6] J. C. Pickup, F. Hussaina, N. D. Evansa, O. J. Rolinskib, D. J. S. Birchb., “Fluorescence-based glucose sensors,” Biosensors and Bioelectronics, Vol. 20, Issue 12, 15, (2005).
    [7] T. L. Chen, Y. L. Lo, C. C. Liao, and Q. H. Phan, “Noninvasive measurement of glucose concentration on human fingertip by optical coherence tomography,” J. Biomed. Opt., Vol. 23, No. 4, 047001 (2018).
    [8] Q. H. Phan and Y. L. Lo, “Stokes–Mueller matrix polarimetry technique for circular dichroism birefringence sensing with scattering effects,” J. Biomed. Opt., Vol. 22, No. 4, 047002 (2017).
    [9] P. Mukherjee, N. Hagen, and Y. Otani, “Glucose sensing in the presence of scattering by analyzing a partial Mueller matrix,” OPTIK, Vol. 180, pp. 775-781 (2019).
    [10] Q. H. Phan and Y. L. Lo, “Stokes-Mueller matrix polarimetry system for glucose sensing,” Optics and Lasers in Engineering, Vol. 92, pp. 120-128 (2017).
    [11] Q. H., Phan and Y. L. Lo, “Differential Mueller matrix polarimetry technique for no-invasive measurement of glucose concentration on human fingertip,” Optics Express, Vol 25, No. 13 (2017).
    [12] P. Terrier, J. M. Charbois, and V. Devlaminck, “Fast-axis orientation dependence on driving voltage for a Stokes polarimeter based on concrete liquid-crystal variable retarders,” Applied Optics, Vol. 49, No. 22 (2010).
    [13] I. Montes-González, N. C. Bruce, O. G. Rodríguez-Herrera, and O. Rodríguez Núňez, “Method to calibrate a full-Stokes polarimeter based on variable retarders,” Applied Optics, Vol. 58, No. 22 (2019).
    [14] C. Stark, R. Behroozian, B. Redmer, F. Fiedler, and S. Müller, “Real-time compensation method for robust polarimetric determination of glucose in turbid media,” Biomed. Opt. Express, Vol. 10, No. 1, 308 (2019).
    [15] Z. Y. Cai and Y. L. Lo, “High accuracy and precision in dual-rotator Mueller matrix polarimeter for glucose concentration measurements,” Submitted to Journal of Optics, May 2021.
    [16] R. M. A. AZZAM “Photopolarimetric measurement of the Mueller matrix by Fourier analysis of a single detected signal,” Optics Letters, 2.6: 148-150 (1978).
    [17] M. Honma, E. Uchida, H. Saito, T. Harada, S. Muto, and T. Nose, “Simple system for measuring optical rotation of glucose solution using liquid-crystal grating,” Japanese Journal of Applied Physics, Vol. 54, No. 12, 122601 (2015).
    [18] David B. Chenault, J. Larry Pezzaniti, Russell A. Chipman, “Mueller matrix algorithms,” Proc. SPIE 1746, Polarization Analysis and Measurement (1992).
    [19] J. del Hoyo, L. M. Sanchez-Brea, J. A. Gomez-Pedrero, “High precision calibration method for a four-axis Mueller matrix polarimeter,” Optics and Lasers in Engineering, Vol. 132, 106112 (2020).
    [20] J. H. Scofield, “Frequency-domain description of a lock-in amplifier,” American Journal of Physics, 62, 129 (1994).
    [21] R. R. Ansari, S. Boeckle, and L. L. J. J. o. b. o. Rovati, "New optical scheme for a polarimetric-based glucose sensor," Vol. 9, No. 1, pp. 103-116 (2004).
    [22] X.S. Zhang, H.Y. Wang, C. He, "Analysis on the effect of extinction ratio in birefringent measurement by phase-stepping method," Proc. SPIE 8557, Optical Design and Testing V, 85572E (2012).
    [23] F. L. Roy-Brehonnet and B. L. Jeune, “Utilization of Mueller matrix formalism to obtain optical targets depolarization and polarization properties,” Pergamon Prog. Quanr. Elecrr., Vol. 21, No. 2 pp. 109-151 (1997).
    [24] S. Wold, H. Martens, H. Wold. “ The multivariate calibration problem in chemistry solved by the PLS method”, In Proceedings from the Conference on Matrix Pencils, Ruhe A, Kagstrom B(eds). Springer: Heidelberg,1983; pp 286-298
    [25] Abdi H. Singular Value Decomposition (SVD) and Generalized Singular Value Decomposition (GSVD). In: Salkind NJ, ed. Encyclopedia of Measurement and Statistics. Thousand Oaks, CA: Sage, 907–912 (2007a)
    [26] Abdi H. Eigen-decomposition: eigenvalues and eigenvecteurs. In: Salkind NJ, ed. Encyclopedia of Measurement and Statistics. Thousand Oaks: Sage; 304–308 (2007b)
    [27] Abdi H. Linear algebra for neural networks. In: Smelser NJ, Baltes PB, eds. International Encyclopedia of the Social and Behavioral Sciences. Oxford, UK: Elsevier (2001)
    [28] de Jong, Sijmen. “SIMPLS: An Alternative Approach to Partial Least Squares Regression.” Chemometrics and Intelligent Laboratory Systems 18, no. 3 (March 1993): 251–63.
    [29] L. Martin, G. LeBrun, B. LeJeune. “Mueller matrix decomposition for biological tissue analysis.” Optics Communications 293 (2013) 4–9.
    [30] Weiqi Li, Chuanwei Zhang, Hao Jiang, Xiuguo Chen1 and Shiyuan Liu. “Depolarization artifacts in dual rotating compensator Mueller matrix ellipsometry.” Journal of Optics 18 055701 (2016).
    [31] N. Agarwal, J. Yoon, E. Garcia-Cauarel, T. Novikova, Jean-Charles Vanel, A. P. A. Bykov, A. Popov, I. Meglinski, and R. Ossikovski. “Spatial evolution of depolarization in homogeneous turbid media within the differential Mueller matrix formalism.” Optics Letters, Vol. 40, No. 23 (2015).
    [32] Sang Hyuk Yoo, Razvigor Ossikovski, Enric Garcia-Caurel. “Experimental study of thickness dependence of polarization and depolarization properties of anisotropic turbid media using Mueller matrix polarimetry and differential decomposition.” Applied Surface Science 421 870–877 (2017)

    無法下載圖示 校內:2026-08-26公開
    校外:2026-08-26公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE