簡易檢索 / 詳目顯示

研究生: 宿秦恩
Su, Chin-En
論文名稱: 用含廣義狄氏先驗分配之簡易貝氏分類器進行集成學習
Naïve Bayesian Classifier with Generalized Dirichlet Priors for Ensemble Learning
指導教授: 翁慈宗
Wong, Tzu-Tsung
學位類別: 碩士
Master
系所名稱: 管理學院 - 資訊管理研究所
Institute of Information Management
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 43
中文關鍵詞: 簡易貝氏分類器集成學習廣義狄氏分配
外文關鍵詞: Base model, ensemble learning, generalized Dirichlet priors, naïve Bayesian classifier
相關次數: 點閱:135下載:20
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 簡易貝氏分類器因為其做法簡單、計算效率高以及良好的分類效能,被廣泛的運用於許多領域中,但簡易貝氏分類器卻鮮少作為基本學習器用於建構集成學習,集成學習是功能強大的機器學習技術之一,透過訓練多個機器學習模型並將其輸出組合在一起的過程,以此來獲取比單個模型更好的分類表現。簡易貝氏分類器因為其本身的學習機制相對穩定,以至於訓練數據的微小變化不會導致分類結果的不同,雖使其對躁聲數據具有容忍的優勢,但同時也限制了使用簡易貝氏分類器做為基本模型建構成集成所能實現的改進,而過去通過使用各種集成方法構建簡易貝氏分類器的集合,卻很少可以實現或造成分類器的分類效能不佳。因此,本研究將修改簡易貝氏分類器的學習機制,採用隨機挑選屬性及選定一個類別加入廣義狄式分配參數進行基本模型的訓練,增加該分類方法的不穩定性以影響分類結果的差異性,同時提升整體分類情形。本研究所提出的分類器雖然運算時間較長,但僅針對隨機選定的類別方式求取參數,因此運算時間仍在合理的範圍內,並且實驗結果亦顯示,各資料集中分類正確率皆表現良好,在20個資料集的實驗中,共有15個分類正確率是最優秀的,並與隨機森林相比擁有更優越的效能且表現更為穩定。

    Naïve Bayesian classifier is a widely applied classification algorithm because of its easy implementation, computational efficiency, and competitive prediction accuracy. Ensemble learning is a powerful technique, and an ensemble model constitutes of a set of base models. Naïve Bayesian classifier is seldom used in previous studies for ensemble learning since it is quite robust to the slight change in training data. In this study, the learning process of naïve Bayesian classifier is modified to induce base models. Bagging is first employed to obtain training sets in which attributes are randomly selected. Then a class value is randomly chosen to set its noninformative generalized Dirichlet priors so that the prediction accuracy is improved. Introducing priors can enhance the diversity among base models. The ensemble algorithm based on naïve Bayesian classifier is tested on 20 data sets, and the experimental results show that it achieves the highest accuracy in 15 data sets with respect to the original naïve Bayesian classifier and the ensemble naïve Bayesian classifier without priors. Its mean accuracy over the 20 data sets is higher than that of random forest.

    摘要 I 目錄 VII 表目錄 IX 圖目錄 X 第一章 緒論 1 1.1 研究背景與動機 1 1.2 研究目的 3 1.3 研究架構 4 第二章 文獻探討 5 2.1 簡易貝氏分類器 5 2.1.1 簡易貝氏分類器運作原理及分類表現 5 2.1.2 簡易貝氏分類器之改良應用 7 2.2 集成學習 9 2.2.1 集成學習之定義 10 2.2.2 集成學習之優缺點 11 2.2.3 集成學習之方法 12 2.3集成方法中使用簡易貝氏分類器之應用 14 2.4提升簡易貝氏分類器多樣性之方法 16 2.4.1資料抽樣 17 2.4.2離散化方法 17 2.4.3先驗分配 18 2.5 小結 20 第三章 研究方法 22 3.1資料前置處理 23 3.2資料切割及拔靴法抽樣 24 3.3屬性隨機挑選及類別隨機挑選 25 3.4訓練基本模型 26 3.5 實驗結果評估 28 第四章 實證研究 29 4.1 資料集特性 29 4.2 屬性參數調整前後的集成與簡易貝氏分類器之比較 30 4.3 GD-NB之基本模型數量增加前後相比較 32 4.4 GD-NB與隨機森林之比較 33 4.5 小結 35 第五章 結論與建議 35 5.1結論 36 5.2未來研究與發展 37 參考文獻 38

    姚靜姍,(2018)。簡易貝氏分類器在不平衡資料集上效能改善之研究。國立成功大學資訊管理研究所碩士班碩士論文。
    Aitchison, J. (1985). A general class of distributions on the simplex. Journal of the Royal Statistical Society, 47(1), 136-146.
    Alhussan, A. & Hindi, K. E (2016). An Ensemble of Fine-Tuned Heterogeneous Bayesian Classifiers. International Journal of Advanced Computer Science and Applications, 7(2).
    Bauer, E. & Kohavi, R. (1999).An Empirical Comparison of Voting Classification Algorithms: Bagging, Boosting, and Variants. Machine Learning, 36, 105–139.
    Beemer, J., Spoon, K., He, L., Fan, J., & Levine, R. A. (2017). Ensemble Learning for Estimating Individualized Treatment Effects in Student Success Studies. Interna-tional Journal of Artificial Intelligence in Education, 28 (1).
    Breiman, L. (1996). Bagging predictors. Machine Learning, 24, 123–140.
    Catlett, J. (1991). On changing continuous attributes into ordered discrete attributes. Proceedings of the Fifth European Working Session on Learning on Machine Learning, 164-178.
    Chen, H., Hu, S., & Hua, R. (2021). Improved Naive Bayes Classification Algorithm for Traffic Risk Management. EURASIP Journal on Advances in Signal Processing, 30.
    Connor, R. J. & Mosimann, J. E. (1969). Concepts of Independence for Proportions with a Generalization of the Dirichlet Distribution. Journal of the American Statistical Association, 64(325), 194-206.
    Cortes, C., Mohri, M., & Syed, U. (2014). Deep Boosting. Proceedings of Machine Learning Research, 32(2), 1179-1187 .
    Dasarathy, B. V., & Sheela, B. V. (1979). A composite classifier system design: Concepts and methodology. Proceedings of the IEEE , 67(5), 708–713.
    Denise, L. (2021). The History of Bootstrapping: Tracing the Development of Resampling with Replacement. The Mathematics Enthusiast, 18(1), Article 8.
    Dietterich, T. G. (2000). Ensemble Methods in Machine Learning. International Workshop on Multiple Classifier Systems, 1–15.
    Dietterich, T. G. (2002). Ensemble Learning. The Handbook of Brain Theory and Neural Networks, 405-408.
    Domingos, P. & Pazzani, M. (1997). On the Optimality of the Simple Bayesian Classifier under Zero-One Loss. Machine Learning, 29(2), 103-130.
    Dougherty, J., Kohavi, R., & Sahami, M. (1995). Supervised and unsupervised discretization of continuous features. Proceedings of the Twelfth International Conference on Machine Learning, 194-202.
    Fayyad, U. & Irani, K.(1993). Multi-Interval Discretization of Continuous-Valued Attributes for Classification Learning. Proceedings of the Thirteenth International Joint Conference on Artificial Intelligence, 1022–1027.
    Freund, Y. & Schapire, R. E. (1996). Experiments with a New Boosting Algorithm. Machine Learning: Proceedings of the Thirteenth International Conference, 96, 148-156.
    Galar, M., Fernandez, A., Barrenechea, E., Bustince, H., & Herrera, F. (2012). A Review on Ensembles for the Class Imbalance Problem: Bagging-, Boosting-, and Hybrid-Based Approaches. IEEE Transactions on Systems, Man, and Cybernetics. Part C: Applications and Reviews, 42(4), 463–484.
    Galar, M., Fernández, A., Barrenechea, E., & Herrera, F. (2013). EUSBoost: Enhancing ensembles for highly imbalanced data-sets by evolutionary undersampling. Pattern Recognition, 46(12), 3460–3471.
    Ghimire, D. & Lee, J. (2014). Extreme Learning Machine Ensemble Using Bagging for Facial Expression Recognition. Journal of Information Processing Systems, 10(3), 443–458.
    Hansen, L. K. & Salamon, P. (1990). Neural Network Ensembles. IEEE Transactions on Pattern Analysis and Machine Intelligence, 12(10), 993-1001.
    Hand D.J. & Adam, N.M. (2000). Defining attributes for scorecvd construction. Journal of Applied Statistics, 27(5), 527-540.
    Hand, D. J. & Yu, K. (2001). Idiot’s Bayes-Not So Stupid After All? International Statistical Review, 69(3), 385-398.
    Hindi, K. N. (2014). Fine tuning the Naïve Bayesian learning algorithm. AI Communications, 27(2), 133-141.
    Hindi, K. E., AlSalman, H., Qasem, S., & Ahmadi, S. A. (2018). Building an Ensemble of Fine-Tuned Naive Bayesian Classifiers for Text Classification. Entrop, 20(11), 857.
    Idrees, F., Rajarajan, M., Conti, M., Chen, T. M., & Rahulamathavan, Y. (2017). PIndroid: A novel Android malware detection system using ensemble learning methods. Computers & Security, 68, 36–46.
    Jiang, T., Li, J., Zheng, Y., & Sun, C. (2011). Improved Bagging Algorithm for Pattern Recognition in UHF Signals of Partial Discharges. Energies, 4(12), 1087 –1101.
    Kearns, M., & Valiant, L. G. (1988). Cryptographic limitations on learning Boolean formulae and finite automata. Journal of the Association for Computing Machinery, 41(1), 67-95.
    Kerber, R. (1992). ChiMerge: Discretization of Numeric Attributes. Proceedings of the Tenth National Conference on Artificial Intelligence, 123–128.
    Kohavi, R. & Sahami, M. (1996). Error-based and entropy-based discretization of continuous features. Journal of Microscopy, 237(3), 487–96.
    Kumar, V. & Minz, S. (2016). Multi-view ensemble learning: An optimal feature set partitioning for high-dimensional data classification. Knowledge and Information Systems, 49(1), 1–59.
    Kumari, P. & Toshniwal, D. (2021). Extreme gradient boosting and deep neural network based ensemblelearning approach to forecast hourly solar irradiance. Journal of Cleaner Production, 279(10), 123285.
    Manuel, F. D. E., Cernadas, E., Barro, S., & Amorim, D. (2014). Do we Need Hundreds of Classifiers to Solve Real World Classification Problems? Journal of Machine Learning Research, 15, 3133-3181.
    Menahem, E., Rokach, L., & Elovici, Y. (2009). Troika—An improved stacking schema for classification tasks. Information Sciences, 179(24), 4097–4122.
    Minku, L. L., & Yao, X. (2012). DDD: A new ensemble approach for dealing with concept drift. IEEE Transactions on Knowledge and Data Engineering, 24(4), 619–633.
    Namrata, S. & Pradeep, S. (2019). A novel Bagged Naïve Bayes-Decision Tree approach for multi-class classification problems. Journal of Intelligent and Fuzzy Systems, 36(3), 2261-2271.
    Nikolić, S., Knežević, M., Ivančević, V.,& Luković, I. (2014). Building an Ensemble from a Single Naive Bayes Classifier in the Analysis of Key Risk Factors for Polish State Fire Service. Annals of Computer Science and Information Systems, 2, 361–367.
    Oza, N. C.& Tumer, k. (2008). Classifier ensembles:Select real-world applications. Information Fusion Volume, 9(1), 4-20.
    Palit, I., & Reddy, C. K. (2012). Scalable and parallel boosting with mapreduce. IEEE Transactions on Knowledge and Data Engineering, 24(10), 1904–1916.
    Paisitkriangkrai, S., Shen, C., & van den Hengel, A. (2016). Pedestrian detection with spatially pooled features and structured ensemble learning. IEEE Transactionson Pattern Analysis and Machine Intelligence, 38(6), 1243–1257.
    Polikar, R. (2006). Ensemble based systems in decision making. IEEE Circuits and Systems Magazine, 6(3), 21-45.
    Prinzie A. & Poel, D. V. D. (2007). Random Multiclass Classification: Generalizing Random Forests to Random MNL and Random NB. International Conference on Database and Expert Systems Applications, 349-358.
    Russell, S. & Norvig, P. (2009). Applying Bayes’ rule: The simple case. Artificial Intelligence: A Modern Approach, 3, 497-499.
    Saini, M. K. & Aggarwal, A. (2018). Detection and diagnosis of induction motor bearing faults using multiwavelet transform and naive Bayes classifier. International Transactions on Electrical Energy Systems, 28(8) , e2577.
    Schapire, R. E. (1990). The strength of weak learnability. Machine Learning, 5(2), 197–227.
    Seng, Z., Kareem, S. A., & Varathan, K. D. (2021). A Neighborhood Undersampling Stacked Ensemble (NUS-SE) in imbalancedclassification. Expert Systems with Applications, 168(15), 114246.
    Sumathi, M. R., & Poorna, B. (2017). Design and development of ensemble of naïve bayes classifiers to predict social and communication deficiency among children. International Journal of Applied Engineering Research, 12(24), 14190-14198.
    Swezey, R. M. E., Shiramatsu, S., Ozono, T., & Shintani, T. (2012).An Improvement for Naive Bayes Text Classification Applied to Online Imbalanced Crowdsourced Corpuses. In Ding, W., H. Jiang, M. Ali and M. Li (Eds.), Modern Advances in Intelligent Systems and Tools (pp.147-152), England,London: Springer.
    Ting, K. M. & Zheng, Z. (2003). A Study of AdaBoost with Naive Bayesian Classifiers: Weakness and Improvement. Computational Intelligence, 19(2) , 186-200.
    Tukey, J. W. (1977). Exploratory data analysis. Biometrical Journal, 23(4), 413-414.
    Werner, J. J., Koren, O., Hugenholtz, P., DeSantis, T. Z., Walters, W. A., Caporaso, J. G., Ley, R. E. (2012). Impact of training sets on classification of high-throughput bacterial 16s rRNA gene surveys. The ISME Journal, 6(1), 94-103.
    Wolpert, D. H. (1992). Stacked generalization. Neural Networks, 5(2), 241–259.
    Wong, T. T. (1998). Generalized Dirichlet distribution in Bayesian analysis. Applied Mathematics and Computation, 97(2), 165-181.
    Wong, T. T. (2009). Alternative prior assumptions for improving the performance of naïve Bayesian classifiers. Data Mining and Knowledge Discovery, 18(2), 183-213.
    Wong, T. T. (2014). Generalized Dirichlet priors for Naïve Bayesian classifiers with multinomial models in document classification. Data Mining and Knowledge Discovery, 28(1), 123-144.
    Wong, T. T. & Liu, C. R. (2016). An efficient parameter estimation method for generalized Dirichlet priors in naïve Bayesian classifiers with multinomial models. Pattern Recognition, 60, 62-71.
    Zakzouk, T. S. & Mathkour, H. I. (2012). Comparing text classifiers for sports news. Procedia Technology, 1, 474-480.
    Zhang .H, Jiang, L., & Yu, L. (2021). Attribute and instance weighted naive Bayes. Pattern Recognition, 111, 107674.
    Zhou, Z. H. (2012). Ensemble Methods: Foundations and Algorithms, 1st Edition, Chapman and Hall/CRC.
    Zhou, X., Wang, S., Xu, W., Ji, G., Phillips, P., Sun, P., & Zhang, Y. (2015). Detection of Pathological Brain in MRI Scanning Based on Wavelet-Entropy and Naive Bayes Classifier. In F. Ortuno and I. Rojas (Eds.), Bioinformatics and Biomedical Engineering (pp.201-209), Granada, Spain: Springer.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE