| 研究生: |
李垠輯 Li, Yin-Ji |
|---|---|
| 論文名稱: |
氘化鈉分子第一單重激發態與部分基態之雷射光譜探討 Laser Spectroscopic Study of the NaD First Excited Singlet State and Parts of the Ground State |
| 指導教授: |
黃守仁
Whang, Thou-Jen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 167 |
| 中文關鍵詞: | 雷射光譜 、氘化鈉 、激發光譜 、雙光子共振 、分子常數 、RKR位能曲線 |
| 外文關鍵詞: | Laser spectroscopy, NaD, Excitation spectroscopy, Optical-optical double resonance, Molecular constant, RKR potential curve |
| 相關次數: | 點閱:129 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本論文中,利用掺銣石榴石雷射激發染料雷射產生可調波長的雷射光來激發氘化鈉分子的光譜來探討氘化鈉分子的基態(X1Σ+能態)與第一單重激發態(A1Σ+能態)。
論文的第一部分是利用激發光譜法收集氘化鈉分子由X1Σ+能態(v”=0, J”)激發至A1Σ+能態(v’, J’)後的自發放射產生的螢光訊號來了解A1Σ+能態的特性。實驗上一共使用四種染料:LDS 759(以二倍頻系統激發)、Exalite 392E、Exalite 400E、Stilbene 420、Coumarin 440(以三倍頻系統激發)產生雷射波長370~434 nm。共收集730條躍遷訊號,振轉能級範圍為v’=5~19, J’=0~24。在量子數確認的部份是利用雷射誘導螢光光譜法來確認收集到的訊號的確切振轉能級。根據實驗觀測到的訊號,經由擬合得到氘化鈉分子A1Σ+能態每一個振動態的振動能級能量(Gv)、轉動常數(Bv)及離心形變常數(Dv)。由實驗結果可推導出一組登亥姆分子常數與RKR位能曲線,此結果比文獻所報導的值更準確。
論文的第二部分是利用雙光子共振螢光減量光譜法收集氘化鈉分子由A1Σ+能態(v’, J’)誘導放射回到X1Σ+能態(v”=14、15, J”)所產生的螢光減量訊號可以探測基態X1Σ+的結構。實驗上使用染料DCM產生並收集雷射波長621~626 nm(v”=14)與643~649 nm(v”=15)共28條振轉能級躍遷訊號,觀測到的振轉能級範圍為v”=14、15, J”=3~11。根據雙光子共振螢光減量光譜所得到的螢光減量訊號,經過計算後得到氘化鈉分子X1Σ+能態v”=14與15的振動能級能量差(ΔGv+1/2)、轉動常數(Bv)並與文獻做比較。
In this study, we investigated the fluorescence spectrum to explore the first excited singlet state A1Σ+ and the ground state X1Σ+ of NaD by laser excitation and laser induced fluorescence.
In the first part, the fluorescence spectra produced by stimulated absorption from ground state X1Σ+ to the first excited A1Σ+ state of NaD molecule were recorded. Five different dyes: LDS 759 (pumped by the second harmonic 532 of Nd:YAG laser), Exalite 392E, Exalite 400E, Stilbene 420, and Coumarin 440 (pumped by the third harmonic 355 of Nd:YAG laser), were used to produce laser wavelength in the range from 370 to 434 nm. A total of 688 transitions were collected and assigned to the rovibrational quantum numbers of v’=5~19, J’=0~24. The quantum number assignment was confirmed by laser-induced fluorescence spectroscopy. According to the signals recorded in the experiment, the vibrational terms (Gv), the rotational constant (Bv), and the centrifugal distortion constant (Dv) were determined for each rovibrational level. A set of Dunham coefficients, and RKR potential curve for A1Σ+ state of NaD are generated and the accuracy is improved compared to the previous literature reports.
In the second part, the laser induced emission signals of NaD molecule relaxed from the intermediate state (A1Σ+(v’,J’)) to ground state (X1Σ+(v”=14-15, J”)) by optical-optical double resonance fluorescence depletion spectroscopy were recorded. The spectra were taken in the laser wavelength of (621~626 nm (v”=14) and 643~649 nm (v”=15)) which were produced by DCM dye. A total of 28 rovibrational transitions were collected and assigned to the rovibrational levels v”=14 and 15, J”=3~11. According to the signals detected in the experiment, the vibrational term (Gv), and the rotational constant (Bv) of vibrational levels v”=14 and 15 were determined in the X1Σ+ state of NaD.
1. W. Demtroder, Laser Spectroscopy (Springer-Verlag, Berlin, 1981).
2. F. P. Pesl, S. Lutz, and K. Bergmann, Eur. Phys. J. D 10, 247 (2000).
3. T. L. Lu, Master thesis, National Cheng Kung University (Taiwan, 2003).
4. H. Y. Huang, Ph. D. thesis, National Cheng Kung University (Taiwan, 2010).
5. S. Lochbrunner, M. Motzkus, G. Pichler, K. L. Kompa and P. Hering, Z. Phys. D 38, 35 (1996).
6. R. E. Olson and B. Liu, J. Chem. Phys. 73, 2817 (1980).
7. H. S. Lee, Y. S. Lee and G. H. Jeung, Chem. Phys. Lett. 46, 325 (2000).
8. Y. Y. Chang, Master thesis, National Cheng Kung University (Taiwan, 2000).
9. M. H. Liao, Master thesis, National Cheng Kung University (Taiwan, 2001).
10. K. L. Wu, Master thesis, National Cheng Kung University (Taiwan, 2002).
11. C. H. Yung, Master thesis, National Cheng Kung University (Taiwan, 2003).
12. J. M. Chiang, Master thesis, National Cheng Kung University (Taiwan, 2004).
13. Y. H. Hsiao, Master thesis, National Cheng Kung University (Taiwan, 2006).
14. H. C. Lin, Master thesis, National Cheng Kung University (Taiwan, 2007).
15. K. V. L. N. Sastry, E. Herbst, and F. C. De Lucia, J. Chem. Phys. 75, 4753 (1981).
16. B. K. Taylor and P. R. Newman, J. Chem. Phys. 118, 8770 (2003).
17. C. E. Moore, Atomic Energy Levels (Washington D. C., 1971)
18. E. S. Sachs, J. Hinze, and N. H. Sabelli, J. Chem. Phys. 62, 3377 (1975).
19. M. Giroud and O. Nedelec, J. Chem. Phys. 73, 4151 (1980).
20. C. C. Chu, Master thesis, National Cheng Kung University, Taiwan (2011).
21. T. Hori, Z. Phys. 62, 352 (1930).
22. E. Olsson, Z. Phys. 93, 206 (1935).
23. R. C. Pankhurst, Proc. Phys. Soc. Lond. A 62, 191 (1948).
24. F. B. Orth, W. C. Stwalley, S. C. Yang, and Y. K. Hsieh, J. Mol. Spectrosc. 79, 314 (1980).
25. K. V. L. N. Sastry, E. Herbst, and F. C. De Lucia, The Astrophysical Journal 248, L53 (1981).
26. K. R. Leopold, L. R. Zink, K. M. Evenson, and D. A. Jennings, J. Mol. Spectrosc. 122, 150 (1987).
27. A. G. Maki and W. B. Olson, J. Chem. Phys. 90, 6887 (1989).
28. P. J. Dagdigian, J. Chem. Phys. 64, 2609 (1975).
29. P. J. Dagdigian, J. Chem. Phys. 71, 2328 (1979).
30. P. Baltayan, A. Jourand, and O. Nedelec, Phys. Lett. 58A, 443 (1976).
31. O. Nedelec, and M. Giroud, J. Chem. Phys. 79, 2121 (1983).
32. U. Magg and H. Jones, Chem. Phys. Lett. 146, 415 (1988).
33. W. C. Stwalley, W. T. Zemke, and S. C. Yang, J. Chem. Phys. Ref. Data 20,153 (1991).
34. G. Pichler, R. R. B. Correia, S. L. Cunha, K. L. Kompa, and P. Hering, Optics Communications, 92, 346 (1992).
35. M. Motzkus, G. Pichler, M. Dillmann, K. L. Kompa, and P. Hering, Applied Physics B-Photophysics and Laser Chemistry, 57, 261 (1993).
36. M. Rafi, N. Ali, K. Ahmad, I. A. Khan, M. A. Baig, and Z. Iqbal, J. phys. B: At. Mol. Opt. Phys. 26, L129 (1993).
37. J. T. Bahns, C. C. Tsai, B. Ji, J. T. Kim, G. Zhao, W. C. Stwalley, J. C. Bloch, and R. W. Field, J. Mol. Spectrosc. 186, 222 (1997).
38. H. Y. Huang, T. L. Lu, T. J. Whang, Y. Y. Chang, and C. C. Tsai, J. Chem. Phys. 133, 44301 (2010).
39. H. Y. Huang, Y. Y. Chang, M. H. Liao, K. L. Wu, T. L. Lu, Y. Y. Chang, C. C. Tsai, and T. J. Whang, Chem. Phys. Lett. 493, 53 (2010).
40. M. Aymar, J. Deiglmayr, and O. Dulieu, Can. J. Phys 87, 543 (2009).
41. D. A. McQuarrie, Quantum Chemistry (University Science Books and Oxford University Press, California, 1983).
42. C. N. Banwell, E. M. McCash, Fundamentals of Molecular Spectroscopy (Tata McGraw-Hill: New Delhi, 1995).
43. G. Herzberg, Molecular Spectra and Molecular Structure: Vol. 1, Spectra of Diatomic Molecules (Robert E. Krieger Publishing Co., Malabar Florida, 1989).
44. Z. G. Wang, H. R. Xia, Molecular and Laser Spectroscopy (Springer-Verlag, New York, 1991)
45. R. Rydberg, Z. Phys. 73, 376 (1931).
46. O. Klein, Z. Phys. 76, 514 (1933).
47. A. Rees, Proc. Phys. Soc. 59, 998 (1947).
48. K. L. Tsai, T. J. Whang, J. Chin. Chem. Soc. 45, 23 (1998).
49. A. S. King, J. Astrophys. 28, 300 (1908).
50. C. R. Vidal, J. Appl. Phys. 44, 2225 (1973).
51. J. T. Bahns, Ph. D. thesis. The University of Iowa, (Iowa, 1983).
52. S. Gerstenkorn, P. Luc, Rev. Phys. Appl. 14, 791 (1979).
53. H. Salami, A. J. Ross, J. Mol. Spectrosc. 233, 157 (2005).
54. X. Zhu, A. H. Nur, P. Misra, J. Quant. Spectrosc. Radiat. Transfer 52, 167 (1994).
55. H. M. Crosswhite, J. Res. of National Bureau of standard-A. Phys. and Chem. 79, 17(1975).
56. E. B. Saloman and C. J. Sansonetti, J. Phys. Chem. Ref. Data 33, 1113 (2004).
57. P. Juncar, J. Pinard, and J. Hamon, A. Chartier, Metrologia 17, 77 (1981)
58. B. Edlén, Metrologia 2, 71 (1966)