簡易檢索 / 詳目顯示

研究生: 張景皓
Chang, Justin
論文名稱: 核廢料處置場地質封存策略之初步研究
Preliminary research of the strategy for deep geological repository for spent fuel
指導教授: 陳昭旭
Chen, Chao-Shi
學位類別: 碩士
Master
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 197
中文關鍵詞: 深地質處置廢棄物罐初始能量圍岩熱傳導係數緩衝材料功能性溫度限制
外文關鍵詞: deep geological disposal, canister initial power, thermal conductivity of host rock, temperature criterion of buffer
相關次數: 點閱:61下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 對於高放射性廢棄物的處置方法,經過國際間多年以來的研究與開發已達到廣泛的共識認為深地質處置是現階段最理想且可行的處置法。深地質處置提供相對足夠的空間容納多年累積且正在產生的高放射性廢棄物,且其對人類生活圈也預期能達到長期的保護。然而現今國際間尚未有實際運轉的深地質處置場,多數仍在研究評估的階段,並且持續地對深地質處置場岩體的條件與狀況進行研究。臺灣也是眾多尋求可行的深地質處置方法的國家之一。
    本論文中我們選擇使用瑞典垂直處置孔的設計策略作為依據,進而討論此方法應用於臺灣地區的可能性。我們重現了瑞典策略的解析解與數值方法,並且與其進行比較驗證(Claesson & Probert, 1996; Hökmark et al., 2009)。同時我們也利用MATLAB的程式語言撰寫了一套可藉由Gaussian數值積分的方法進行此解析解的運算的程式。
    經由驗證確認本研究對於瑞典策略的重現結果準確且可行後,我們對臺灣的一個K區進行了案例研究。須註明本研究進行的時間點尚未對於此K區進行完整的地質調查,因此對於我們運用的參數有需要再行確認。在本論文的案例研究中,我們將瑞典策略的方法應用於K區之上,進而判斷需要何種調整此方法方能套用於臺灣的環境。我們更是深入地探討深地質處置場設計的幾何形狀與建設時的費用與安全的相關性。
    本研究中我們發現深地質處置場設計的幾何形狀對於廢棄物罐之最高溫幾乎沒有影響,因此由於在廢棄物罐的數量估定時開挖體積與隧道的數量呈反比的關係,少而長的隧道設計可以視為較為經濟的深地質處置場設計。如欲將瑞典策略的方法應用於臺灣的環境,由於臺灣位於亞熱帶地區且深地層溫度較高,調整廢棄物罐的間距以避免其最高溫超過限制的概念將泰為昂貴且並不現實。延長廢棄物在中期處置場的時間以降低廢棄物罐的初始能量的方式相對於言較為可行。本研究中繪製了對於K區內岩石的不同熱傳導率之廢棄物罐初始能量與溫度的曲線圖。雖然此曲線圖的運用限定於K區,但是此曲線圖的方法應可應用於任何決定以調整廢棄物罐初始能量的方法以避免廢棄物罐最高溫超出限制的區域之中。

    After numerous years of international research and development there is a broad technical consensus that deep geological disposal is preferred method for the management of High Level radioactive Waste (HLW). Deep geological disposal offers relatively enough space to accommodate the large volume of HLW accumulated over the years will provide safety of to humankind and the environment for now and far into the future. Though there yet to be an operating geological repository for HLW, and there remains substantial public research about the underground rock mass of geological repository. Taiwan is one of the many countries that are seeking for a viable method to develop a deep geological repository.
    In this thesis, we chose the Swedish strategy for vertical deposition holes as a reference and discuss the feasibility to apply this method in Taiwan. We reproduced the analytical solution and numerical methods of the Swedish strategy. The results are verified by comparison with the analytical solutions of the Swedish strategy (Claesson & Probert, 1996; Hökmark et al., 2009). A Gaussian quadrature program is also developed with MATLAB to perform the calculations of the analytical solution by approximating the integrals with the Gaussian quadrature.
    With the verification that the method of this study is feasible and accurate, a case study is performed for a K area located in Taiwan. It should be noted that at the time of the study geological investigations of the K area were not complete and the parameters input requires further confirmation. In the case study we apply the method of the Swedish strategy to the K area and determine what adjustment are necessary to adapt the concept to Taiwan. We also made further discussions about the geometry of the layout of a repository and the relevance with the cost and safety factors.
    In this study, we found that the geometry of the layout of the repository is irrelevant to the peak buffer temperature, so as the excavation volume scales directly with the number of tunnels when the canister count is constant, a repository with long tunnels is expected to be a more economic design. To apply the Swedish strategy to a location in the subtropical regions, such as Taiwan, adjustments to canister spacing is too expensive and is not a realistic method to avoid the temperature criterion. Reducing the canister initial power by keeping the used fuel assembles in the interim storage should be a more possible method. A nomographic canister initial power-temperature chart for different rock conductivities in the K area has been developed in this study. Though this chart may only be used in the K area, the concept of this chart should be viable for any area that decides to use variable canister initial power to avoid the temperature criterion.

    摘要 I Abstract III Acknowledgements V Table of Contents VI List of Tables IX List of Figures XI Symbols and Notation XIX Chapter 1. Introduction 1 1.1 Background and Motivation 1 1.2 Objectives of this study 4 1.3 Layout of this thesis 5 Chapter 2. Literature review 7 2.1 Methods for deep geological repositories globally 7 2.1.1 United States 7 2.1.2 Canada 10 2.1.3 Japan 12 2.1.4 Korea 14 2.1.5 Sweden 15 2.2 The Swedish strategy 18 2.3 Analytical solution of rock wall temperature 21 2.3.1 Global temperature at central canister 22 Chapter 3. Methodology 26 3.1 Outline of the Swedish strategy 26 3.2 Thermal site descriptive model 31 3.3 Data and model uncertainties 32 3.3.1 Uncertainty in the local buffer/canister solution 32 3.3.2 Uncertainty in the calculation of rock wall temperature 33 3.4 Temperature margin 36 3.5 Maximum buffer temperature calculations – analytical solution 40 3.5.1 Description of the temperature field 41 3.5.2 Superimposing of the temperature field 43 3.5.3 The global solution for rectangular heat source 46 3.5.4 The heat decay function 51 3.5.5 Governing equations 52 3.5.6 Temperature difference between rock wall and bentonite 58 3.5.7 Analytical solution with numerical methods 61 3.6 Guess (trial) value of canister spacing 70 3.6.1 First trial value of canister spacing 71 3.6.2 Layout of the repository 73 3.7 Realisations of thermal property distribution 76 3.8 Maximum buffer temperature calculations – numerical solution 84 Chapter 4. Verification and case study 94 4.1 Verification of the Gaussian quadrature program 94 4.1.1 Rock wall temperature of the center of the repository 94 4.1.2 Multi panel repository 102 4.1.3 Nomographic canister spacing-temperature chart 108 4.2 Case study – application of the Swedish strategy to Taiwan 110 4.2.1 Analytical solution 112 4.2.2 Numerical analysis 123 Chapter 5. Conclusions and Suggestions 145 5.1 Summary and conclusions 145 5.2 Recommendations for future works 147 Bibliography 148 Appendix A - Nomographic canister spacing-temperature charts 152 Appendix B – Results of temperature field simulation 174

    1. AEC (1998), On the Basic Approach to High-Level Radioactive Waste Disposal. Proceedings of the Special Committee on the Disposal of High-Level Radioactive Waste, Atomic Energy Commission of Japan (in Japanese).
    2. AEC. Spent Fuel Management. Atomic Energy Council: Taiwan. Available online: http://www.aec.gov.tw/english/radwaste/article301.php (accessed on 2 October 2016)
    3. Abramowitz, M. & I .A. Stegun (1964), Handbook of Mathematical Functions, National Bureau of Standards, Washington DC, the USA.
    4. Arvidsson, A., P. Josefsson, P. Eriksson, T. Sandén & M. Ojala (2015), System design of backfill. Project results (SKB Technical Report TR-14-20) Sweden: Swedish Nuclear Fuel and Waste Management Company Press.
    5. Back P.E. & J. Sundberg, (2007), A strategy for the model development during site investigations – version 2(SKB Technical Report R-07-42) Sweden: Swedish Nuclear Fuel and Waste Management Company Press.
    6. Börgesson L, A. Fredrikson, & L.E. Johannesson (1994), Heat conductivity of buffer materials (SKB Technical Report TR-94-29) Sweden: Swedish Nuclear Fuel and Waste Management Company Press.
    7. Börgesson L, B. Fälth & J. Hernelind (2006), Water saturation phase of the buffer and backfill in the KBS-3V concept (SKB Technical Report TR-06-14) Sweden: Swedish Nuclear Fuel and Waste Management Company Press.
    8. Börgesson L, M. Åkesson, M. Birgersson, H. Hökmark & J. Hernelind (2016), EBS TF – THM modelling. BM 1 – Small scale laboratory tests (SKB Technical Report TR-13-06) Sweden: Swedish Nuclear Fuel and Waste Management Company Press.
    9. Brantberger, M., A. Zetterqvist, T. Arnbjerg-Nielsen, T. Olsson, N. Outters & P. Syrjänen (2006), Final repository for spent nuclear fuel. Underground design Forsmark, Layout D1 (Svensk Kärnbränslehantering AB, SKB Technical Report R-06-34), Sweden: Swedish Nuclear Fuel and Waste Management Company Press.
    10. Carle, S. F (1999), T-PROGS: Transition Probability Geostatistical Software. Ver 2.1, University of California, Davis, the USA.
    11. Carle, S. F. & G. E. Fogg (1997), “Modeling spatial variability with one- and multi-dimensional Markov chains”, Mathematical Geology, v.29, pp.891-918
    12. Carslaw H.S. & J.C. Jaeger (1957), Heat condition is solids, England: Oxford University Press.
    13. Claesson, J. & T. Probert (1996), Temperature field due to time-dependent heat sources in a large rectangular grid– Derivation of analytical solution (SKB Technical Report TR-96-12) Sweden: Swedish Nuclear Fuel and Waste Management Company Press.
    14. DOE’s Office of Civilian Radioactive Waste Management (2002), Yucca Mountain Science and Engineering Report (DOE/RW-0539-1) The USA: Department of Energy.
    15. Fälth B. & H. Hökmark (2006), Mechanical and thermo-mechanical discrete fracture near-field analyses based on preliminary data from the Forsmark, Simpevarp and Laxemar sites (SKB Technical Report R-06-89) Sweden: Swedish Nuclear Fuel and Waste Management Company Press.
    16. ElBaradei M., (2006), “Storage and Disposal of Spent Fuel and High Level Radioactive Waste”, Proceedings of the Fiftieth regular session of the IAEA General Conference, September
    17. GMS (Groundwater Modeling System), (2006), Tutorials, Volume 1. Ver 6.0. Environmental Modeling Research Laboratory, Brigham Young University, the USA.
    18. Google Maps. Forsmark Nuclear Power Plant. Google: The USA. Available online: https://www.google.com.tw/maps/@60.4036148,18.1764155,1405m/
    data=!3m1!1e3?hl=zh-TW (accessed on 11 August 2016)
    19. Hedin, A. (2004), Integrated near-field evolution (SKB Technical Report R-04-36), Sweden: Swedish Nuclear Fuel and Waste Management Company Press.
    20. Hökmark, H., M. Lönnqvist, O. Kristensson, J. Sundberg & G. Hellström (2009), Strategy for thermal dimensioning of the final repository for spent nuclear fuel (SKB Technical Report R-09-04) Sweden: Swedish Nuclear Fuel and Waste Management Company Press.
    21. Hökmark, H. & B. Fälth (2003), Thermal dimensioning of the deep repository (SKB Technical Report TR-03-09) Sweden: Swedish Nuclear Fuel and Waste Management Company Press.
    22. Hsu (2014), Coupled Thermo-Hydro-Mechanical Analysis of Neighboring Materials on the Geological Disposal of Nuclear Waste, Unpublished Master's Dissertation, National Cheng Kung University, Tainan, R.O.C., Taiwan.
    23. International Atomic Energy Agency (2007), Safety glossary: terminology used in nuclear safety and radiation protection, Austria: International Atomic energy Agency.
    24. International Atomic Energy Agency (2012), Storage of spent nuclear fuel. Specific safety guide (IAEA Safety Standards Series SSG-15), Austria: International Atomic energy Agency.
    25. International Atomic Energy Agency International Review Team (2013), An International Peer Review of the Programme for the Deep Geological Disposal of High Level Radioactive Waste from Pyro-Processing in the Republic of Korea, Austria: International Atomic energy Agency.
    26. Itasca (2005), FLAC – Fast Lagrangian Analysis of Continua, User’s guide, Itasca Consulting Group, Inc., Minneapolis, the USA.
    27. Japan Nuclear Cycle Development Institute (2000), H12: Project to Establish the Scientific and Technical Basis for HLW Disposal in Japan (JNC Project Overview Report TN1410 2000-001) Japan: Japan Nuclear Cycle Development Institute.
    28. Journel, A.G., C.J. Huijbregts (1978), Mining geostatistics, London: Academic Press.
    29. KAERI. KAERI Underground Research Tunnel (KURT). Korea Atomic Energy Research Institute: Korea. Available online: https://www.kaeri.re.kr/english/sub/sub03_02_01_05.jsp (accessed on 25 November 2016)
    30. Keto, P., D. Dixon, E. Jonsson, D. Gunnarsson, L. Börgesson & J. Hansen (2009) Assessment of backfill design for KBS-3V repository (SKB Technical Report R-09-52) Sweden: Swedish Nuclear Fuel and Waste Management Company Press.
    31. Kristensson, O. & L. Börgesson (2015), Canister Retrieval Test. Final report (SKB Technical Report TR-14-19) Sweden: Swedish Nuclear Fuel and Waste Management Company Press.
    32. Kojo, Matti & A. Oksa (2011), Adaption of the Swedish KBS disposal concept to Finland: technology transfer case study, Working Paper, School of Management, University of Tampere, Finland.
    33. Kojo, Matti & T. Litmanen (2009), The Strategy of Site Selection for the Spent Nuclear Fuel Repository in Finland, The Renewal of Nuclear Power in Finland, pp.161-191, Palgrave Macmillan, Basingstoke.
    34. Kristensson, O. & H. Hökmark (2007), Prototype Repository. Thermal 3D modelling of Äspö Prototype Repository (SKB Technical Report IPR-07-01) Sweden: Swedish Nuclear Fuel and Waste Management Company Press.
    35. Kukkonen, I. & A. Lindberg (1995), Thermal Conductivity of Rocks at the TVO Investigation Sites Olkiluoto, Romuvara and Kievetty, (Report YJT-95-08) Finland: Nuclear Waste Commission of Finnish Power Companies, Helsinki.
    36. Lee, Y., H.J. Choi, J.Y. Lee, J. Kim & J. Choi (2005), “The Thermal Effect of Gaps in the Engineered Barrier System (EBS) of HLW repository”, Proceedings of the KNS spring meeting, Korea Atomic Energy Research Institute, Korea.
    37. Lin, P.Y. (2016), Anisotropic thermal analysis of the high-level nuclear waste in final geological repositories, Unpublished Master's Dissertation, National Cheng Kung University, Tainan, R.O.C., Taiwan.
    38. NEI. Disposal: Yucca Mountain Repository. Nuclear Energy Institute: The USA. Available online: https://www.nei.org/Issues-Policy/Used-Nuclear-Fuel-Mana
    gement/Disposal-Yucca-Mountain-Repository (accessed on 25 November 2016)
    39. Nikula, A., H. Raumolin, V. Ryhänen, T. Seppälä, J. Vira & T. Äikäs (2012), Kohti turvallista loppusijoitusta. Ydinjätehuollon neljä vuosikymmentä. (Towards safe final disposal. The four decades of nuclear waste management.) Posiva Oy, Eurajoki. (in Finnish).
    40. Noronha, J. (2016), Crystalline / Sedimentary Rock Environment (NWMO Deep Geological Repository Conceptual Design Report APM-REP-00440-0015 R001) Canada: Nuclear Waste Management Organization.
    41. NUMO. Study Areas. Nuclear Waste Management Organization: Japan. Available online: https://www.nwmo.ca/en/Site-selection/Study-Areas (accessed on 11 July 2017)
    42. Pettersson, S. & B. Lönnerberg (2008), “Final Repository for Spent Nuclear Fuel in Granite – The KBS-3V Concept in Sweden and Finland”, Proceedings of the Underground Disposal Unit Design & Emplacement Processes for a Deep Geological Repository International Conference, 16-18, June, Prague.
    43. Posiva SKB (2017), Safety functions, performance targets and technical design requirements for a KBS-3V repository. Posiva SKB Report 01 Sweden: Swedish Nuclear Fuel and Waste Management Company Press & Finland: Posiva Oy.
    44. Pusch, R. (2008) Rock fill in a KBS-3 repository (SKB Technical Report TR-08-117) Sweden: Swedish Nuclear Fuel and Waste Management Company Press.
    45. Sundberg, J. (2003), A strategy for the model development during site investigations (SKB Technical Report R-03-10) Sweden: Swedish Nuclear Fuel and Waste Management Company Press.
    46. Sundberg, J., J. Wrafter, M. Ländell, P.E. Back & L. Rosén (2008a), Thermal properties Forsmark Modelling stage 2.3: Complementary analysis and verification of the thermal bedrock model, stage 2.3 (SKB Technical Report R-08-65) Sweden: Swedish Nuclear Fuel and Waste Management Company Press.
    47. Sundberg, J., J. Wrafter, P.E. Back & L. Rosén (2008b), Thermal properties Laxemar. Site descriptive modelling SDM Site Laxemar (SKB Technical Report R-08-61) Sweden: Swedish Nuclear Fuel and Waste Management Company Press.
    48. SKB (2006) Long-term safety for KBS-3 repositories at Forsmark and Laxemar – a first evaluation. Main Report of the SR-Can project. (SKB Technical Report TR-06-09) Sweden: Swedish Nuclear Fuel and Waste Management Company Press.
    49. SKB (1999a) SR 97-Post Closure Safety. (SKB Technical Report TR-99-06) Sweden: Swedish Nuclear Fuel and Waste Management Company Press.
    50. SKB (1999b) SR 97- Processes in the Repository Evolution. (SKB Technical Report TR-99-07) Sweden: Swedish Nuclear Fuel and Waste Management Company Press.
    51. SKB. The Spent Fuel Repository. Svensk Kärnbränslehantering AB:Sweden. (2016). Available online: http://www.skb.com/future-projects/the-spent-fuel-
    repository/ (accessed on 22 November 2016)
    52. Taiwan Power Company (2009), Preliminary Technical Feasibility Study for Final Disposal of Spent Nuclear Fuel (Progress Report SNFD2009) R.O.C., Taiwan: Taiwan Power Company.
    53. Zhuang, Q.R. (2015), Coupled Thermo-Hydro-Mechanical Analysis of Near-Field Isolation Materials in the Nuclear Waste Repository, Unpublished Master's Dissertation, National Cheng Kung University, Tainan, R.O.C., Taiwan.

    無法下載圖示 校內:2023-12-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE