簡易檢索 / 詳目顯示

研究生: 張恩旗
Chang, En-Chi
論文名稱: 毛細力驅動流體晶片的設計和混合應用
A study on the design and mixing application of the capillary driven fluidic chip
指導教授: 鍾震桂
Chung, Chen-Kuei
學位類別: 碩士
Master
系所名稱: 工學院 - 奈米科技暨微系統工程研究所
Institute of Nanotechnology and Microsystems Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 105
中文關鍵詞: 微混合器毛細力幫浦晶片
外文關鍵詞: micromixer, capillary pump chip
相關次數: 點閱:145下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 實驗室晶片是生醫檢測一直想發展的部份,生醫檢測除了要精確之外,還希望達到輕、薄、短、小、節省檢測時間、節省檢測試劑與檢體等目的,毛細力的驅動恰好符合這些需求,靠著材料本身的親水性推動流體,所以不用外加推動系統,JSR光阻與玻璃本身就是親水性材料,且親水性不隨時間衰弱。
    本研究針對矩形流道的毛細作用做探討,從理論開始著手,討論親斥水性材質與流道幾何等參數對流動的影響,然後配合實驗互相比較,提供設計混合晶片的依據。
    最後提出兩種製程來製作混合晶片-雙面膠玻璃晶片與JSR光阻玻璃晶片,這兩種晶片都具有上述優點。在此使用擋版結構來增加其混合的效果,這兩種晶片只需簡單的雷射加工與黃光製程就可以製作,不需要蝕刻與沉積等等的程序,在混合效果方面也相當不錯。希望未來可以與生醫檢測整合,做出可以商品化的檢測晶片。

    Lab on chip is very significant study in biology test system. In addition to accuracy, we hope the chips are slight, thin, small, time saving and reagent saving. The capillary force driving system conforms to these requirements because of the fluid is driven by the hydrophilic material without external force.
    In our research, both hydrophilic property of JSR photoresist and glasses don’t decay with time are utilized under micro rectangle channels system by capillary force driving. First, we discuss the effect of channel geometry and hydrophilic material on micro fluid field. Then, we compare the theory with experiments to get the best design of channels.
    Finally, two kinds of micromixer named JSR-glass micromixer and doubleside tape-glass micromixer are fabricated which both have the above advantages. Here, baffles are used to be the mixing structure for enhancing the mixing efficiency. These chips have a good mixing efficiency fabricated easily by photolithography and laser ablation without etching and deposition process. We hope our chip can be utilized in practical bio-test filed.

    摘要 I Abstract II 致謝 III 目錄 IV 表目錄 VI 圖目錄 VII 符號說明 X 第一章 緒論 1 1-1研究背景 1 1-2文獻回顧 2 1-3研究動機 17 1-4本文架構 19 第二章 理論基礎與推導 20 2-1表面張力 20 2-2接觸角 23 2-3幾何形狀的影響-長直流道 26 2-3-1幾何與壓力的關係 26 2-3-2幾何與位置時間的關係 28 2-3-3幾何形狀造成的阻力 30 2-4幾何形狀的影響-擴張角 31 2-4-1幾何形狀的影響-擴張角(2D) 31 2-4-2幾何形狀的影響-擴張角(3D) 37 2-5擴散原理 38 第三章 無結構直流道的製作與參數設計 40 3-1實驗製程與儀器 40 3-1-1雷射製程 40 3-1-2黃光微影製程 42 3-1-3 PDMS翻模 47 3-1-4流道改質 49 3-2直流道實驗布局 52 3-2-1 PDMS氧電漿改質流道的製作與參數 53 3-2-2雙面膠-玻璃流道的製作與參數 56 3-2-3 JSR光阻-玻璃流道的製作與參數 58 第四章 永親水性自驅動擋版結構混合晶片之製作與參數 61 4-1 製作原理與布局 61 4-2 雙面膠-玻璃自驅動混合晶片之製作與參數 62 4-3 JSR光阻-玻璃自驅動混合晶片之製作與參數 65 第五章 結果討論 72 5-1直流道幾何與流道材質對流動的影響 72 5-1-1 PDMS氧電漿改質流道流動實驗結果 72 5-1-2雙面膠-玻璃流道流動實驗結果 74 5-1-3 JSR光阻-玻璃流道實驗結果 74 5-2解析解的比較與流動預測 77 5-3混和器的效應與討論 80 5-3-1混合效率與混合機制 80 5-3-2雙面膠-玻璃混和晶片的效應與討論 81 5-3-3 JSR光阻混合晶片的效應與討論 83 5-3-4雙面膠-玻璃與JSR光阻-玻璃混合器的比較 88 5-4 CFDRC模擬結果 89 第六章 結論與未來展望 95 6-1結論 95 6-2未來展望 97 參考文獻 98

    1.H. Moon, S. K. Cho, R. L. Garrell, and C. J. Kim, “Low Voltage electrowetting-on-dielectric”, Journal of Applied Physics, Vol. 92, pp. 4080-4087, 2002.
    2.C. C.Wong, D. R. Adkins and D. Chu, “Development of a micropump for microelectronic cooling”, Journal of Microelectromechanical Systems, Vol. 59, 1996.
    3.S. H. Ahn and Y. K. Kim, “Fabrication and experiment of a planar micro ion drag pump”, Sensors Actuators A, Vol. 70, pp. 1–5, 1998.
    4.J. Darabi, M. Rada, M. Ohadi and J. Lawler, “Design, fabrication and testing of an electrohydrodynamic ion-drag micropump”, Journal of Microelectromechanical Systems, Vol. 11, pp. 684–690, 2002.
    5.A. Furuya, F. Shimokawa, T. Matsuura and R. Sawada, “Fabrication of fluorinated polyimide microgrids using magnetically controlled reactive ion etching (MC-RIE) and their applications to an ion drag integrated micropump”, Journal of Micromechanical Microengineering, Vol. 6, pp. 310–319, 1996.
    6.D. J. Laser and J. G. Santiago, “A review of micropumps”, Journal of Micromechanical Microengineering, Vol. 14, pp. R35-R64, 2004.
    7.S. H. Yao, D. E. Hertzog, S. L. Zeng, J. C. Mikkelsen and J. G. Santiago, “Porous glass electroosmotic pumps: design and experiments”, Journal of Colloid Interface Science, Vol. 268, pp. 143-153, 2003.
    8.A. MacHauf, Y. Nemirovsky and U. Dinnar, “A membrane micropump electrostatically actuated across the working fluid”, Journal of Micromechanical Microengineering, Vol. 15, pp. 2309-2316, 2005.
    9.M. Elwenspoek, T. S. J. Lammerink, R. Miyake and J. H. J. Fluitman, “Towards integrated microliquid handling systems”, Journal of Micromechanical Microengineering, Vol. 4, pp. 227–245, 1994.
    10.T. Y. Ng, T.Y. Jiang, H. Lib, K.Y. Lamb and J. N. Reddyc, “A coupled field study on the non-linear dynamic characteristics of an electrostatic micropump”, Journal of Sound and Vibration, Vol. 273, pp. 989-1006, 2003.
    11.O. Francais and I. Dufor, “Dynamic simulation of an electrostatic micropump with pull-in and hysteresis phenomena”, Sensors and Actuators A 70, pp. 56-60, 1998.
    12.S. Bohm, W. Olthuis and P. Bergveld, “A plastic micropump constructed with conventional techniques and Materials”, Sensors and Actuators A Vol. 77, pp. 223-228, 1999.
    13.Q. Gong, Z. Zhou, Y. Yang and X. Wang, “Design, optimization and simulation on micro electromagnetic pump”, Sensors and Actuators A Vol. 83, pp. 200-207, 2000.
    14.D. S. Leea, J. S. Koa and Y. T. Kima, “Bidirectional pumping properties of a peristaltic piezoelectric micropump with simple design and chemical resistance”, Thin Solid Films, Vol. 468, pp. 285-290, 2004.
    15.M. Kochy, N. Harris, A. G. R. Evans, N. M. White and A Brunnschweiler, “A novel micromachined pump based on thick-film piezoelectric actuator”, Sensors and Actuators A, Vol. 70, pp. 98-103, 1998.
    16.J. H. Tsai and L. W. Lin, “A Thermal bubble actuated micro nozzle-diffuser pump”, Proceedings of the IEEE Micro Electro Mechanical Systems (MEMS), pp. 409-412, 2001.
    17.J. H. Tsai and L. W. Lin, “A Thermal-bubble-actuated micronozzle-diffuser pump”, Journal of Microelectromechanical systems, Vol. 11, pp. 665-671, 2002.
    18.E. Makino, T. Shibata and K. Kato, “Dynamic thermo-mechanical properties of evaporated TiNi shape memory thin film”, Sensors and Actuators A, Vol. 78, pp. 163-167, 1999.
    19.E. Makino, T. Mitsuya and T. Shibata, “Fabrication of TiNi shape memory micropump”, Sensors and Actuators A, Vol. 88, pp. 256-262, 2001.
    20.Y. J. Chuang, T. H. Chen and F. G. Tseng, “Low temperature, clogging-free and roughness-insensitive polymer bonding methods for stacked polymer microfluidic systems”, IEEE Transducers'05, June 8-12, Seoul, South Korea, 2005.
    21.J. A. Vickers, M. M. Caulum, and C. S. Henry, “Generation of hydrophilic poly(dimethylsiloxane) for high-performance microchip electrophoresis”, Analytical Chemistry, Vol. 78, pp. 7446-7452, 2006.
    22.回寶珩, 林展生, 李國賓,“PDMS表面處理技術及其在新式微閥之應用”, The 6th Nano Engineering and Micro System Technology Workshop, Sec. 4C-5, 2002.
    23.W. Huang, Q. Liu, and Y. Li, “Capillary filling flows inside patterned-surface microchannels”, Chemical Engineering and Technology, Vol. 29, No. 6, pp. 827–836, 2006.
    24.S. Bouaidat, O. Hansen, He. Bruus, C. Berendsen, N. K. Bau-Madsen, P. Thomsen, A. Wolff and J. Jonsmann, “Surface-directed capillary system; theory, experiments and applications”, Lab on A Chip, Vol. 5, pp. 827–836, 2005.
    25.M. Zimmermann, H. Schmid, P. Hunziker and E. Delamarche, “Capillary pumps for autonomous capillary systems”, Lab on a Chip, Vol. 7, pp. 119–125, 2007.
    26.P. E. Man, C. H. Mastrangelo, M. A. Burns, and D. T. Burke, “Microfabricated capillarity-driven stop valve and sample injector”, Proceedings of the IEEE Micro Electro Mechanical Systems (MEMS), pp. 45–50, 1998.
    27.T. S. Leu, Pei-Yu Chang, “Pressure barrier of capillary stop valves in micro sample separators.”, Sensors and Actuators A, Vol. 115, pp. 508–515, 2004.
    28.M. Zimmermann, P. Hunziker , E. Delamarche, “Valves for autonomous capillary systems.”, Microfluid Nanoflulid, Vol. 5, pp. 395–402, 2008.
    29.S. J. Kim, Y. T. Lim, H. Yang, Y. B. Shin, K. Kim, D. S. Lee, S. H. Park, and Y. T. Kim, “Passive microfluidic control of two merging streams by capillarity and relative flow resistance.”, Analytial Chemistry, Vol. 77 , pp. 6494-6499, 2005.
    30.H. Y. Wu and C. H. Liu, “A novel electrokinetic micromixer”, The 12th International Conference on Solid State Sensors, Actuators and Microsystems, Boston, U.S.A., pp. 631-634, 2003.
    31.Z. Yang, S. Matsumoto, H. Goto, M. Matsumoto and R. Maedu, “Ultrasonic micromixer for microfluidic systems”, Sensors and Actuators A, Vol. 93, pp. 266-272, 2001.
    32.L. H. Lu, K. S. Ryu and C. Liu, “A magnetic microstirrer and array for microfluidic mixing”, Journal of Microelectormechanical Systems, Vol. 11, pp. 462-469, 2002.
    33.J. H. Tsai and L. Lin, “Active microfluidic mixer and gas bubble filter driven by thermal bubble micropump”, Sensors and Actuators A, Vol. 97-98, pp. 665-671, 2002.
    34.J. Branebjerg, P. Gravesen, J. P. Krog, and C. R. Nielsen, “Fast mixing by lamination”, IEEE Micro Electro Mechanical Systems, San Diego, U.S.A., pp. 441-446, 1996.
    35.S. C. Jacobson, T. E. McKnight, and J. M. Ramsey, “Microfluidic devices for electrokinetically driven parallel and serial mixing”, Analytical Chemistry, Vol. 71, pp. 4455-4459, 1999.
    36.A. D. Stroock, S. K. W. Dertinger, A. Ajdari, I. Mezic, H. A. Stone and G. M. Whitesides, “Chaotic mixer for microchannels”, Science, Vol. 295, pp. 647-651, 2002.
    37.C. K. Chung and T. R. Shih, “Effect of geometry on fluid mixing of the rhombic micromixers”, Microfluid Nanofluid, Vol. 4, pp. 419-425, 2008.
    38.C. K. Chung, T. R. Shih, T. C. Chen and B. H. Wu, “Mixing behavior of the rhombic micromixers over a wide Reynolds number range using Taguchi method and 3D numerical simulations”, Biomedical Microdevice, Vol. 10, pp. 739-748, 2008
    39.M. Engler, N. Kockmann, T. Kiefer, and P. Woias, “Numerical and experimental investigations on liquid mixing in static micromixers”, Chemical Engineering Journal, Vol. 101, pp. 315-322, 2004.
    40.S. H. Wong, M. C. L. Ward, and C. W. Wharton, “Micro T-mixer as a rapid mixing micromixer”, Sensor and Actuator B: Chemical, Vol. 100, pp. 359-379, 2004.
    41.I. D. Yang, Y. F. Chen, F. G. Tseng, H. T. Hsu and C. C. Chieng, “Surface tension driven and 3-D vortex enhanced rapid mixing microchamber”, Journal of Microelectromechanical Systems, Vol. 15, pp. 659-670, 2006.
    42.C. F. Chen, C. F. Kung, H. C. Chen, C. C. Chu, C. C. Chang, and F. G. Tseng, “A microfluidic nanoliter mixer with optimized grooved structures driven by capillary pumping” Journal of Micromechanics and Microengineering. Vol. 16, pp. 1358–1365, 2006.
    43.陳浩平, 微流體晶片之表面張力與微流道幾何尺寸關係分析模擬, 南台科技大學碩士論文, 2003.
    44.科學發展2007年3月, 411期.
    45.L. J. Yang, T. J. Yao and Y. C. Tai, “The marching velocity of the capillary meniscus in a microchannel.”, Journal of Micromechanics and Microengineering, Vol. 14, pp. 220–225, 2004.
    46.張郁佩, 微流元件內表面張力驅動之流體流動現象的實驗探討, 成功大學碩士論文, 2003.
    47.B. H. Jo, Linda M. van Lerberghe, Kathleen M. Motsegood, and David J. Beebe, “Three-dimensional micro-channel fabrication in polydimethylsiloxane (PDMS) elastomer,” Journal of Microelectro Mechanical System, Vol. 9, NO. 1, pp. 76-81, 2000.
    48.Van Oss, C. J., Chaudhury, M. K., Good, R. J., Chem. Rev. 88, pp. 927, 1988.

    無法下載圖示 校內:2020-12-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE