簡易檢索 / 詳目顯示

研究生: 陳君奇
Chen, Chun-Chi
論文名稱: 一氧化碳及氫氣濃度對燃料電池影響之研究
The Effect of Carbon Monoxide and Hydrogen Concentration on Proton Exchange Membrane Fuel Cells.
指導教授: 賴維祥
Lai, Wei-Hsiang
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 108
中文關鍵詞: 重組器質子交換膜燃料電池重組氣體一氧化碳稀釋氫氣
外文關鍵詞: PEMFC, reformer, reformate, diluted hydrogen, voltage fluctuated, voltage drop
相關次數: 點閱:122下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 燃料電池是具有潛力的新興能源之一,然而由於氫氣難以運輸及儲存之故,近年來由重組器提供富氫之混和氣體,再由質子交換膜燃料電池產生電力之燃料電池供電系統,已蔚為流行。但是,由重組器所製作之混和氣體,除了氫氣濃度較低之外,尚含有許多種類之混和氣體,可能會對燃料電池的性能造成負面的影響。
    因此,本研究針對混和氣體中,對燃料電池影響最為嚴重之氣體,即一氧化碳在10 ppm, 50 ppm 及100 ppm濃度並在以Pt-Ru作為陽極觸媒的情況下進行基礎研究,除了瞭解當其加入陽極燃料時,所造成的電池行為及性能影響之外,本研究亦針對其在加入40%, 60%等不同濃度之稀釋氫氣後,對性能造成的額外影響進行探討。
    藉由本研究之探討,吾人發現雖然氫氣濃度本身對燃料電池的極化曲線影響有限,但是若是提供給燃料電池的氫氣量不足時,將會導致燃料電池產生濃度極化而造成損害;此外,當稀釋氫氣與一氧化碳混和後,此混和氣體對燃料電池的影響亦非常鉅大,不但會提高電壓下降的速率,亦會增加電壓下降的幅度。而當一氧化碳濃度增加時,不論是與純氫或是與稀釋氫氣混合,皆會使燃料電池之性能下降,且一氧化碳之濃度越高,性能下降的幅度就越大。當一氧化碳之濃度高於100 ppm時,甚至會使電池電壓因一氧化碳之電化學氧化率與吸附率間的消長而開始震盪,使得燃料電池因電壓的震盪而無法提供後端負載或是電控部分一穩定之電池性能。

    The proton exchange membrane fuel cells (PEMFC) is one of the most promising alternatives of the new energy. Due to difficulties of the hydrogen transportation and storage, it becomes a tendency to use reformers to supply the hydrogen-rich reformate for the fuel cell system in recent years. However, there are some problems if the reformate is used as the fuel of RMFCs. In addition to the drawback of the low hydrogen concentration, the reformate contains many other kinds of gases which may cause negative effects on the PEMFC performance.
    In this study, the author focuses on the effects of carbon monoxide (CO) which is one of the most critical impurities. The effects of the CO concentration and hydrogen concentration on the PEMFC behavior were investigated while the mixed gases composed by hydrogen, nitrogen and CO were introduced to the anode of an MEA where the Pt-Ru catalyst was coated.
    In the experiments of the hydrogen-nitrogen mixed gas, it was observed that the concentration polarization appeared in conditions of the insufficient hydrogen flow rate and it might result in a drop of the PEMFC performance. However, the effect of hydrogen concentration on the power output was not significant. When CO was further introduced to the diluted hydrogen, it caused a significant decrease of the PEMFC performance. CO resulted in not only a decrease of voltage, but also an acceleration of voltage drop.
    When the CO concentration was increased, it caused significant drop of the fuel cell performance, in spite of nitrogen to be introduced in the mixed hydrogen or not. It was also observed that the increase of the CO concentration resulted in an increase of the voltage drop. Furthermore, when the CO concentration was higher than 100 ppm, the cell voltage fluctuated, and it therefore resulted in an unsteady output of the performance. This phenomenon can be interpreted by the interaction of the oxidation rate of CO and the adsorption rate of CO on the catalyst which are functions of the anodic overpotential.

    第一章 緒論.............................................1 第二章 基礎理論........................................16 2-1 燃料電池簡介........................................16 2-2 質子交換膜燃料電池基本構造..........................18 2-3 質子交換膜燃料電池工作原理..........................23 2-4 電池性能評估........................................25 2-4-1 極化曲線..........................................25 2-4-2 定電流放電........................................30 2-4-3 陽極過電位........................................30 2-5 觸媒表面化學現象及平衡..............................32 第三章 實驗設備........................................36 3-1 燃料電池測試系統....................................38 3-1-1 增溼及加熱系統....................................40 3-1-2 資料及擷取系統....................................42 3-1-3 石墨流道板單電池..................................44 3-2 氣體混和機..........................................45 3-3 即時氣體分析儀......................................47 第四章 實驗方法........................................53 4-1 自製標準單電池設計及抗毒化膜電極組..................53 4-2 循環伏安法原理......................................59 4-3 實驗矩陣............................................62 4-4 實驗前置處理-活化程序..............................63 4-5 實驗步驟與濃度量測..................................64 第五章 結果與討論......................................66 5-1 膜電極組活化及再現性測試............................66 5-2 稀釋氫氣對燃料電池的影響............................68 5-3 純氫下CO對燃料電池的影響............................72 5-3-1 10 ppmCO下不同電流對電池性能之長時間影響..........72 5-3-2 定電流下不同濃度之CO對電池性能的影響..............75 5-3-3 不同CO濃度之混合氣體對陽極即時出口CO濃度之影響....77 5-3-4 不同CO濃度之混合氣體對陽極觸媒吸附情形之比較......82 5-3-5 回復後電池性能再現性測試..........................85 5-4 稀釋氫氣及一氧化碳對燃料電池的影響..................86 5-4-1 75%稀釋氫氣混和各比例一氧化碳對燃料電池的影響.....86 5-4-2 40%稀釋氫氣混和各比例一氧化碳對燃料電池的影響.....90 5-4-3 定電流下稀釋氫氣混和10ppm CO對電池的長時間影響....94 5-4-4 添加一氧化碳後之稀釋氫氣對燃料電池的影響比較......97 第六章 結論...........................................100 第七章 未來工作.......................................102 參考文獻...............................................103 自述...................................................108

    1. 陳振源, “未來的綠色能源─燃料電池,” 科學發展月刊: 319期, pp. 62-65, 2005年7月.
    2. 楊志忠, 林頌恩, 韋文城, “燃料電池的發展現況,” 科學發展月刊: 367期, pp. 30-33, 2003年7月.
    3. J.W. Tester, E.M. Daek, M.J. Driscoll, M.W. Golay, W.A. Golay, W.A. Peters, “Sustainable Energy,” The MIT Press, 2005.
    4. S. Kim, S. Shimpalee, J.W. Van Zee, “The Effect of Reservoirs and Fuel Dilution on the Dynamic Behavior of a PEMFC,” Journal of Power Sources, 137: pp. 43-52, 2004.
    5. S. Shimpalee, U. Beuscher, J.W. Van Zee, “Investigation of Gas Diffusion Media inside PEMFC Using CFD Modeling,” Journal of Power Sources, 163: pp. 480–489, 2006.
    6. R.J. Bellows, E.P. Marucchi-Soos, D.T. Buckley, “Analysis of Reaction Kinetics for Carbon Monoxide and Carbon Dioxide on Polycrystalline Platinum Relative to Fuel Cell Operation,” Ind. Eng. Chem. Res., 35: pp. 1235-1242, 1996.
    7. H.S. Chu, C.P. Wang, W.C. Liao, W.M. Yan, “Transient Behavior of Co Poisoning of the Anode Catalyst Layer of a Pem Fuel Cell,” Journal of Power Sources, 151: pp. 1071–1077, 2006.
    8. S. Jiménez, J. Soler, R.X. Valenzuela, L. Daza, “Assessment of the Performance of a PEMFC in the Presence of CO,” Journal of Power Sources, 151: pp. 69–73, 2005.
    9. M.S. Wilson, C. Derouin, J. Valerio, S. Gottesfeld, “Electrocatalysis Issues in Polymer Electrolyte Fuel Cells.,” Electrocatalysis Issues in Polymer Electrolyte Fuel Cells: pp. 1.1203-1.1208, 1993.
    10. G.A. Camara, E.A. Ticianelli, S. Mukerjee, S.J. Lee, J. McBreen, “The CO Poisoning Mechanism of the Hydrogen Oxidation Reaction in Proton Exchange Membrane Fuel Cells,” Journal of The Electrochemical Society, 149(6): pp. A748-A753, 2002.
    11. Grgur, B. N., Markovic, N. M., Ross, P. N., “The Electro-Oxidation of H2 and H2/CO Mixtures on Carbon-Supported PtxMoy Alloy Catalysts,” Journal of The Electrochemical Society, 146(5): pp. 1613-1619, 1999.
    12. D.J. Ham, Y.K Kim, S.H. Han, J.S. Lee, “Pt/WC as an Anode Catalyst for PEMFC: Activity and CO Tolerance,” Catalysis Today, 132: pp. 117–122, 2008.
    13. C. He, H.R. Kunz, J.M. Fenton, “Electro-Oxidation of Hydrogen with Carbon Monoxide on Pt/Ru-Based Ternary Catalysts,” Journal of The Electrochemical Society, 150(8): pp. A1017-A1024, 2003.
    14. L.G.S. Pereira, V.A. Paganin, E.A. Ticianelli, “Investigation of the CO Tolerance Mechanism at Several Pt-Based Bimetallic Anode Electrocatalysts in a PEM Fuel Cell,” Electrochimica Acta, 54: pp. 1992–1998, 2009.
    15. S. Mukerjee, R.C. Urian, S.J. Lee, E.A. Ticianelli, J. McBreen, “Electrocatalysis of CO Tolerance by Carbon-Supported PtMo Electrocatalysts in Pemfcs,” Journal of The Electrochemical Society, 151: pp. A1094-A1103, 2004.
    16. S.J. Lee, S. Mukerjee, E.A. Ticianelli, J. McBreen, “Electrocatalysis of CO Tolerance in Hydrogen Oxidation Reaction in Pem Fuel Cells,” Electrochimica Acta, 44: pp. 3283-3293, 1999.
    17. D.A. Stevens, J.M. Rouleau, R.E. Mar, R.T. Atanasoski, A.K. Schmoeckel, M.K.Debe, J.R. Dahn, “Enhanced CO-Tolerance of Pt–Ru–Mo Hydrogen Oxidation Catalysts,” Journal of The Electrochemical Society, 154(12): pp. B1211-B1219, 2007.
    8. T. Ioroi, K. Yasuda, Z. Siroma, N. Fujiwara, Y. Miyazaki, “Enhanced CO-Tolerance of Carbon-Supported Platinum and Molybdenum Oxide Anode Catalyst,” Journal of The Electrochemical Society, 150: pp. A1225-A1230, 2003.
    19. R.C. Urian, A.F. Gullá, S. Mukerjee, “Electrocatalysis of Reformate Tolerance in Proton Exchange Membranes Fuel Cells: Part I,” Journal of Electroanalytical Chemistry, 554-555: pp. 307-324, 2003.
    20. Y. Kawasoe, S. Tanaka, T. Kuroki, H. Kusaba, K. Ito, Y. Teraoka, K. Sasaki, “Preparation and Electrochemical Activities of Pt–Ti Alloy Pefc Electrocatalysts,” Journal of The Electrochemical Society, 154: pp. B969-B975, 2007.
    21. H. Zhang, Y. Wang, E.R. Fachini, C.R. Cabrera, “Electrochemically Codeposited Platinum/Molybdenum Oxide Electrode for Catalytic Oxidation of Methanol in Acid Solution,” Electrochemical and Solid-State Letters, 2(9), 1999.
    22. Z. Qi, A. Kaufman, “CO Tolerance of Low Loaded Pt/Ru Anodes for Pem Fuel Cell,” Journal of Power Sources, 113: pp. 115-123, 2003.
    23. S.V. Ashton, “Platinum Metals Review,” Johnson Matthey Public Limited Company, 46: pp. UK ISSN 0032-1400, 2002.
    24. H. Lua, L. Rihko-Struckmanna, R. Hanke-Rauschenbach, K. Sundmacher, “Improved Electrochemical CO Removal Via Potential Oscillations in Serially Connected Pem Fuel Cells with Ptru Anodes,” Electrochimica Acta, 54: pp. 1184–1191, 2009.
    25. A.H. Thomason, T.R. Lalk, A.J. Appleby, “Effect of Current Pulsing and “Self-Oxidation” on the CO Tolerance of a Pem Fuel Cell,” Journal of Power Sources, 135: pp. 204–211, 2004.
    26. A.T. Haug, R.E. White, J.W. Weidner, W. Huang, “Development of a Novel CO Tolerant Proton Exchange Membrane Fuel Cell Anode,” Journal of The Electrochemical Society, 149(7): pp. A862-A867, 2002.
    27. A.T. Haug, R.E. White, J.W. Weidner, W. Huang, S. Shi, N. Rana, S. Grunow, T.C. Stoner, A.E. Kaloyeros, “Using Sputter Deposition to Increase CO Tolerance in a Proton-Exchange Membrane Fuel Cell,” Journal of The Electrochemical Society, 149(7): pp. A868-A872, 2002.
    28. P.A. Adcock, S.V. Pacheco, K.M. Norman, F.A. Uribe, “Transition Metal Oxides as Reconfigured Fuel Cell Anode Catalysts for Improved Co Tolerance: Polarization Data,” Journal of The Electrochemical Society, 152(2): pp. A459-A466, 2005.
    29. H.S. Chu, F. Tsau, Y.Y. Yan, K.L. Hsueh, F.L. Chen, “The Development of a Small PEMFC Combined Heat and Power System,” Journal of Power Sources, 176: pp. 499–514, 2008.
    30. C.C. Chung, C.H. Chen, D.Z. Weng, “Development of an Air Bleeding Technique and Specific Duration to Improve the CO Tolerance of Proton-Exchange Membrane Fuel Cells,” Applied Thermal Engineering, 29: pp. 2518–2526, 2009.
    31. B. Rohland, V. Plzak, “The PEMFC-Integrated CO Oxidation — a Novel Method of Simplifying the Fuel Cell Plant,” Journal of Power Sources, 84: pp. 183–186, 1999.
    32. W. Shi, M. Hou, Z. Shao, J. Hu, Z. Hou, P. Ming, B. Yi, “A Novel Proton Exchange Membrane Fuel Cell Anode for Enhancing CO Tolerance,” Journal of Power Sources, 174: pp. 164–169, 2007.
    33. F.A. Uribe, J.A. Valerio, F.H. Garzon, T.A. Zawodzinski, “PEMFC Reconfigured Anodes for Enhancing CO Tolerance with Air Bleed,” Electrochemical and Solid-State Letters, 7(10): pp. A376-A379, 2004.
    34. F. Sapountzi, M.N. Tsampas, C.G. Vayenas, “Electrocatalysis and Electrochemical Promotion of CO Oxidation in Pem Fuel Cells: The Role of Oxygen Crossover,” Topics in Catalysis, 44(3): pp. 461-468, 2007.
    35. W. Wang, “The Effect of Internal Air Bleed on CO Poisoning in a Proton Exchange Membrane Fuel Cell,” Journal of Power Sources, 191: pp. 400–406, 2009.
    36. J. Zhang, T. Thampan, R. Datta, “Influence of Anode Flow Rate and Cathode Oxygen Pressure on CO Poisoning of Proton Exchange Membrane Fuel Cells,” Journal of The Electrochemical Society, 149(6): pp. A765-A772, 2002.
    37. A.C. Garcia, V.A. Paganin, E.A. Ticianelli, “CO Tolerance of Pd/Pt/C and Pd/Pt/Ru/C Anodes for Pemfc,” Electrochimica Acta, 53: pp. 4309–4315, 2008.
    38. H.A. Gasteiger, N. Markovic, P.N. Ross, Jr., E.J. Cairns, “CO Electrooxidation on Well-Characterized Pt-Ru Alloys,” J. Phys. Chem., 98: pp. 617-625, 1994.
    39. L. Giorgi, A. Pozio, C. Bracchini, R. Giorgi, S. Turtua, “H2 and H2/CO Oxidation Mechanism on Pt/C, Ru/C and Pt-Ru/C Electrocatalysts,” Journal of Applied Electrochemistry, 31: pp. 325-334, 2001.
    40. F.B. de Mongeot, M. Scherer, B. Gleich, E. Kopatzki, R.J. Behm, “CO Adsorption and Oxidation on Bimetallic Pt/Ru(0001) Surfaces– A Combined Stm and Tpd/Tpr Study,” Surface Science, 411: pp. 249–262, 1998.
    41. N. Wagner, M. Schulze, “Change of Electrochemical Impedance Spectra During CO Poisoning of the Pt and Pt /Ru Anodes in a Membrane Fuel Cell (PEFC),” Electrochimica Acta, 48: pp. 3899-3907, 2003.
    42. F. Maillard, G.Q. Lu, A. Wieckowski, U. Stimming, “Ru-Decorated Pt Surfaces as Model Fuel Cell Electrocatalysts for CO Electrooxidation,” J. Phys. Chem., 109: pp. 16230-16243, 2005.
    43. W.A. Adams, J. Blair, K.R. Bullock, C.L. Gardner, “Enhancement of the Performance and Reliability of CO Poisoned Pem Fuel Cells,” Journal of Power Sources, 145: pp. 55–61, 2005.
    44. Z. Qi, C. He, A. Kaufman, “Poisoning of Proton Exchange Membrane Fuel Cell Cathode by CO in the Anode Fuel,” Electrochemical and Solid-State Letters, 12: pp. A204-A205, 2001.
    45. T. Smolinka, M. Heinen, Y.X. Chen, Z. ZJusys, W. Lehnert, R.J. Behm, “CO2 Reduction on Pt Electrocatalysts and Its Impact on H2 Oxidation in CO2 Containing Fuel Cell Feed Gas – a Combined in Situ Infrared Spectroscopy, Mass Spectrometry and Fuel Cell Erformance Study,” Electrochimica Acta, 50: pp. 5189–5199, 2005.
    46. F. Alcaide, Ó.S. Miguel, H.J. Grande, “New Approach to Prepare Pt-Based Hydrogen Diffusion Anodes Tolerant to CO for Polymer Electrolyte Membrane Fuel Cells,” Catalysis Today, 116: pp. 408–414, 2006.
    47. L.G.S. Pereira, V.A. Paganin, E.A. Ticianelli, “Investigation of the CO Tolerance Mechanism at Several Pt-Based Bimetallic Anode Electrocatalysts in a Pem Fuel Cell,” Electrochimica Acta, 54: pp. 1992-1998, 2009.
    48. W. Shi, B. Yi, M. Hou, Z. Shao, “The Effect of H2 and CO Mixtures on Pemfc Performance,” International Journal of Hydrogen Energy, 32: pp. 4412-4417, 2007.
    49. K.K. Bhatia, C.Y. Wang, “Transient Carbon Monoxide Poisoning of a Polymer Electrolyte Fuel Cell Operating on Diluted Hydrogen Feed,” Electrochimica Acta, 49: pp. 2333–2341, 2004.
    50. H.P. Dhar, L.G. Christner, A.K. Kush, “Nature of CO Adsorption During H2 Oxidation in Relation to Modeling for CO Poisoning of a Fuel Cell Anode,” Electrochemical Science And Technology, 134, 1987.
    51. M. Murthy, M. Esayian, A. Hobson, S. MacKenzie, W.K. Lee, J.W. Van Zee, “Performance of a Polymer Electrolyte Membrane Fuel Cell Exposed to Transient CO Concentrations,” Journal of The Electrochemical Society, 148(10): pp. A1141-A1147, 2001.
    52. 黃鎮江, “燃料電池,” 全華科技圖書有限公司, 台北市, pp.1-9 - 1-10, 2003年.
    53. 林昇佃, 余子隆, 張幼珍, 翁芳柏, 李碩仁, 林育才, 吳和生, 魏榮宗, 林修正, 賴子珍, 曾盛恕, 詹世弘, “燃料電池-新世紀能源,” 滄海書局, 台中市, pp. 1-32, 2006年.
    54. EG&G Services Parsons, “Inc. Fuel Cell Handbook,” 6th Edition, 2002.
    55. T.E. Springer, T. Rockward, T.A. Zawodzinski, S. Gottesfeld, “Model for Polymer Electrolyte Fuel Cell Operation on Reformate Feed - Effects of CO, H2 Dilution, and High Fuel Utilization,” Journal of The Electrochemical Society, 148(1): pp. A11-A23, 2001.
    56. R.K.A.M. Mallant, “PEMFC Systems: The Need for High Temperature Polymers as a Consequence of Pemfc Water and Heat Management,” Journal of Power Sources, 118: pp. 424–429, 2003.
    57. K.T. Adjemian, S. Srinivasan, J. Benziger, A.B. Bocarsly, “Investigation of Pemfc Operation above 100 ℃ Employing Perfluorosulfonic Acid Silicon Oxide Composite Membranes,” Journal of Power Sources, 109, pp. 356–364, 2002.
    58. N. Djilali, D. Lu, “Influence of Heat Transfer on Gas and Water Transport in Fuel Cells,” Int. J. Therm. Sci, 41: pp. 29–40, 2002.
    59. 氣相層析儀簡介, http://www.ch.ntu.edu.tw/~chemedu3/Lecture/GC.htm.
    60. USFCC Materials and Components Working Group, “Fuel Cell Leak Testing Requirements and Procedure,” 2006.
    61. US Fuel Cell Council's Single Cell Testing Task Force, “Single Cell Test Protocol,” 2006.
    62. J. Zhang, “Investigation of CO Tolerance in Proton Exchange Membrane Fuel Cells,” 2004.

    下載圖示 校內:2015-07-15公開
    校外:2015-07-15公開
    QR CODE