| 研究生: |
黃舜杰 Huang, Shun-Chieh |
|---|---|
| 論文名稱: |
應用田口方法於甲醇水蒸汽重組器性能之參數研究 Parametric Study on the Performance of Methanol Steam Reformer with Taguchi Method |
| 指導教授: |
吳鴻文
Wu, Horng-Wen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 系統及船舶機電工程學系 Department of Systems and Naval Mechatronic Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 69 |
| 中文關鍵詞: | 甲醇水蒸汽重組 、甲醇轉化率 、產氫量 、田口實驗方法 、最佳化因子組合 |
| 外文關鍵詞: | Methanol steam reformer, Methanol conversion rate, Hydrogen production efficiency, Taguchi method, Optimum factor combinations |
| 相關次數: | 點閱:117 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文使用甲醇水蒸汽重組搭配田口實驗方法找出加熱溫度、水對甲醇莫耳比(S/C)與攜帶氣體體積流率的最佳化組合。本文中對三種控制因子取三種不同水準,加熱溫度將使用220、250與280 K,水對甲醇莫耳比(S/C)使用0.9、1.0和1.1,攜帶氣體使用氮氣,進氣量則分別為40、70與100 cm3/min。採用田口直交表及控制因子組合進行實驗,量測並記錄產氫濃度、CO濃度、CO2濃度及N2濃度後,計算其甲醇轉化率與產氫量。
本文使用田口實驗方法可大幅減少實驗次數,使其實驗成本降低並得到最穩定的結果及較佳的實驗再現性,並透過變異數分析(Analysis of variance,簡稱ANOVA)探討各控制因子對於產氫濃度、產氫量、甲醇轉換率、CO濃度、CO2濃度及N2濃度的影響程度,並找出對上述品質目標都有正面影響的因子及貢獻度,分別得到對應各品質目標的最佳化因子組合。
本研究預計產出2 L/min的氫氣,因此將噴嘴設定甲醇水溶液流率為3.1 cm3/min,實驗結果顯示,當S/C比為0.9、攜帶氣體體積流率為40 cm3/min、反應溫度為280℃時,得到最高氫氣產量為0.074 mole/min,相當於108.8公升/hr。理論上質子交換膜燃料電池對氫氣的使用效率約為70 %,因此1000瓦的質子交換膜燃料電池實際所需的氫氣量為33.3 mole/hr。由此推斷出,本文產生的氫氣量為4.44 mole/hr,可供應133.34瓦的質子交換膜燃料電池使用。
This study uses methanol steam reforming with Taguchi method to identify the heating temperature, steam to carbonate ratio (S/C) with carrier gas volume flow rate corresponding to each quality objective optimization factor combinations. In this study, three different control factors will select three different levels, heating temperature with the 220, 250 and 280 K, steam to carbonate ratio (S/C) with 0.9, 1.0, and 1.1 using N2 carrier gas with the volume flow rate of 40, 70 and 100 cm3/min. Using Taguchi orthogonal arrays and control of factor combinations performs the experiment, measures, and records the hydrogen concentration, CO concentration, CO2 concentration, and N2 concentration to calculate methanol conversion rate and hydrogen production efficiency.
This study uses Taguchi method to greatly reduce experimental runs so it can decrease cost and obtain the most stable results and better repeatability. In addition, the influence level of each control factor on hydrogen production concentration, hydrogen production efficiency, methanol conversion rate, CO concentration, CO2 concentration, and N2 concentration is analyzed through Analysis of variance (ANOVA). Furthermore, the positive impact factors and contribution on level quality objective are identified and the optimal factor combinations corresponding to each quality objective are obtained.
The results show that when the nozzle is set at volume flow rate of methanol aqueous solution of 3.1 cm3/min, S/C ratio of 0.9, volume flow rate of carrier gas of 40 cm3/min, and the reaction temperature of 280 ℃, the highest hydrogen production is 0.074 mole/min, which is equivalent to 108.8 liters per hour of hydrogen generation. The proton exchange membrane fuel cells for hydrogen use efficiency is theoretically about 70 %, so 1000 watts of proton exchange membrane fuel cell requires 33.3 mole/hr for the actual amount of hydrogen. It is thus inferred that this amount of hydrogen generated in 4.44 mole/hr, will be able to supply the use for 133.34 watts of proton exchange membrane fuel cell.
1. 方良吉,“2010年能源產業技術白皮書”,經濟部能源局,2010。
2. 李方正,“新能源”,新文京開發出版股份有限公司,2009。
3. 黃鎮江,“燃料電池(修訂版)”,全華圖書,2007。
4. 陳彥伊,“燃料電池重組器觸媒對反應後氣體CO濃度的影響”,碩士論文,國立臺灣大學機械工程學系,2006。
5. S.S. Sandhu, Y.A. Saif, J.P. Fellner, “A reformer performance model for cell applications”, J. Power Sources 140 (2005) 88-102.
6. 曲新生,陳發林,呂錫民,“產氫與儲氫技術”,五南圖書出版股份有限公司,2007。
7. 市川勝,“圖解氫能源”,世茂出版有限公司,2009。
8. J.S Han, I.S. Kim, K.S. Choi, “Purifier-integrated methanol reformer for fuel cell vehicles”, J. Power Sources 86 (2000) 223-227.
9. B. Emonts, J. Bøgild Hansen, H. Schmidt, T. Grube, B. Höhlein, R. Peters, A. Tschauder, “Fuel cell drive system with hydrogen generation in test”, J. Power Sources 86 (2000) 228-236.
10. B. Emonts, J. Bøgild Hansen, S. Loegsgaard Jørgensen, B. Höhlein, R. Peters, “Compact methanol reformer test for fuel-cell powered light-duty vehicles”, J. Power Sources 71 (1998) 288-293.
11. N. Edwards, S.R. Ellis, J.C. Frost, S.E. Golunski, A.N.J.van. Keulen, N.G. Lindewald, J.G. Reinkingh, “On-board hydrogen generation for transport application:the HotSpot methanol processor”, J. Power Sources 71 (1998) 123-128.
12. 蘇朝墩,“品質工程”,中華民國品質學會,2002年。
13. B.A. Peppley, J.C. Amphlett, L.M. Kearns, R.F. Mann, “Methanol-steam reforming on Cu/ZnO/Al2O3. Part 1:the reaction work”, Applied Catalysis A:General 179 (1999) 21-29.
14. B. Linddström, L.J. Pettersson, “Development of a methanol fuelled reformer for fuel cell application”, J. Power Sources 118 (2003) 71-78.
15. J.S. Suh, M.T. Lee, R. Greif, C.P. Grigoropoulos, “A study of steam methanol reforming in a microreactor”, J. Power Sources 173 (2007) 458-466.
16. N. Liu, Z. Yuan, C. Wang, L. Pan, S. Wang, S. Li, D. Li, S. Wang, “Bench-scale methanol autothermal reformer for distributed hydrogen production”, Chemical Engineering Journal 139 (2008) 56–62.
17. B. Hohlein, M. Boe, H.J. Bogild, P. Brockerhoff, G. Colsman, B. Emonts, “Hydrogen from methanol for fuel cells in mobile system:development of a compact reformer”, J. Power Sources 61 (1996) 143-147.
18. 陳彥璋,“燃料電池用之甲醇蒸汽重組器暫態模擬分析”,碩士論文,國立成功大學系統及船舶機電工程學系,2009。
19. 林弘民,“燃料電池用自發熱甲醇重組器性能量測與數值模擬”,碩士論文,國立中興大學機械工程學系,2004。
20. 詹前歆,“燃料電池用之甲醇重組器冷起動過程之產氫特性研究”,碩士論文,崑山科技大學機械工程學系,2005。
21. R.F. Horng, “Transient behaviour of a small methanol reformer for fuel cell during hydrogen production after cold start”, Energy Conversion and Management 46 (2005) 1193-1207.
22. R.F. Horng, C.R. Chen, T.S. Wu, C.H. Chan, “Cold start response of a small methanol reformer by partial oxidation reforming of hydrogen for fuel cell”, Applied Thermal Engineering 26 (2006) 1115-1124.
23. 鄭耀宗、徐耀昇、萬瑞霙,行政院環境保護署88年度科技研究發展專案計畫,“燃料電池電動車可行性評估與發展規劃研究報告”。
24. 周中洋,“燃料電池重組器性能分析與觸媒影響之研究”,碩士論文,國立臺灣大學機械工程學系,2005。
25. J.B. Holman, “Experimental Methods for Engineers”, McGraw Hill Publications, 2003.
26. 鄭耀宗、林錦燦、萬瑞霙,“PEMFC做為車輛動力系統的先期研究”,能源季刊,第二十七卷,P93-103,1997。
27. 崑山科技大學車輛能源實驗室,http://ksuvel.myweb.hinet.net/index-1.htm。
28. 曾士彥,“加氨對電解水產氫效應之研究”,碩士論文,國立成功大學系統與船舶機電學系,2011。
29. 蘇育霖,“數值模擬應用於觸媒加熱之甲醇水蒸汽重組性能研究”,碩士論文,國立成功大學系統與船舶機電學系,2013。
校內:2018-09-10公開