簡易檢索 / 詳目顯示

研究生: 周大鈞
Chou, Tai-Chun
論文名稱: 基於計畫評核術推論灰模型預測值之發生機率
Inferring Occurrence Probabilities of Grey Model Predictions Based on Program Evaluation and Review Technique
指導教授: 利德江
Li, Der-Chiang
學位類別: 碩士
Master
系所名稱: 管理學院 - 工業與資訊管理學系碩士在職專班
Department of Industrial and Information Management (on the job class)
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 41
中文關鍵詞: 灰預測模型短期時間序列資料模糊化計畫評核術
外文關鍵詞: Short term time series data, Grey models, Program Evaluation and Review Technique
相關次數: 點閱:107下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在過往的20年間,灰預測模型(Grey Model)與其衍伸方法已經驗證其對於短期時間序列資料的學習效果。然而,從管理角度視之,單一預測值對於一個未來事件而言,可能是資訊不足的。在處理資料不確定性時,為了更進一步推論灰模型其預測值之發生可能性,本研究開發一個短期時間序列資料的模糊化方法,並基於計畫評核術(Program Evaluation and Review Technique; PERT),而提出一個新穎的灰預測學習流程。實驗結果顯示,本研究方法在一筆包含八類產品以及一筆公開資料集中,顯示較傳統灰預測模型有更好的預測效果,冀能於實務上協助公司決策者於使用灰模型時,能有更多資訊以利策略之決斷。

    Over the past two decades, for dealing with short-term time series data, the grey model (GM) and its extents have been used a lot as effective tools. However, from the management aspect, depending on a single prediction for a future event could lack of enough information. For the purpose of inferring the occurrence probabilities of GM predictions with uncertain data, a novel GM learning procedure based on a series fuzzification method and the PERT (Program Evaluation and Review Technique) is constructed. A real case picked from a giant company in the integrated-circuit assembly industry as well as a public dataset gained from the UC Irvine machine learning repository was examined in the proposed procedure. From the experimental results, more accurate GM predictions are aggregated by the proposed procedure can be found. Besides, the proposed procedure can be used for inferring the occurrence probability of estimators or possible ranges, and managers thus are able to make a better decision by employing the information.
    Keywords: Short term time series data; Grey models; Program Evaluation and Review Technique

    摘要 I 誌謝 XIV 目錄 XV 圖目錄 XVII 表目錄 XVIII 第一章 緒論 1 1.1 研究背景 1 1.2 研究動機 2 1.3 研究範圍與限制 3 1.4 研究目的 3 1.5 研究流程 4 第二章 文獻探討 5 2.1 常用的預測方法 5 2.1.1 定量預測方法 5 2.1.2 定性預測方法 7 2.2 模糊理論 8 2.2.1 隸屬函數 (Membership Function) 8 2.2.2 模糊時間序列 (Fuzzy Time Series, FTS) 10 2.3 盒鬚圖 (BOX-AND-WHISKER PLOT) 11 2.4 計畫評核術(PROGRAM EVALUATION AND REVIEW TECHNIQUE) 12 2.5 灰色系統理論 14 2.5.1 灰預測模型 Grey Model (1,1) 16 2.5.2 灰色系統理論之應用 16 第三章 研究方法 19 3.1 符號及模糊灰預測模型之定義 19 3.2 序列資料模糊化 19 3.3 灰預測模型之建構 22 3.4 預測結果之整合處理 24 第四章 實例驗證 26 4.1 實驗資料集 26 4.2 實驗設置 27 4.3 實驗結果 28 4.4 進階討論 30 第五章 結論 34 參考文獻 36

    Chang, C.J., Li, D.C., Huang, Y.H., Chen, C.C. (2015). A novel gray forecasting model based on the box plot for small manufacturing data sets, Appl Math Comput, 265 400-408.
    Chen, S.-M. (1996). Forecasting enrollments based on fuzzy time series. Fuzzy Sets and Systems, 81(3), 311-319. doi:https://doi.org/10.1016/0165-0114(95)00220-0
    Chen, S.-M. (2002). FORECASTING ENROLLMENTS BASED ON HIGH-ORDER FUZZY TIME SERIES. Cybernetics and Systems, 33(1), 1-16. doi:10.1080/019697202753306479
    Chen, S.-M., & Chen, C.-D. (2011). Handling forecasting problems based on high-order fuzzy logical relationships. Expert Systems with Applications, 38(4), 3857-3864. doi:https://doi.org/10.1016/j.eswa.2010.09.046
    Chen, Y., Lifeng, W., Lianyi, L., & Kai, Z. (2020). Fractional Hausdorff grey model and its properties. Chaos, Solitons & Fractals, 138, 109915. doi:https://doi.org/10.1016/j.chaos.2020.109915
    Deng., J.L. (1982). Control problems of grey systems, Syst Control Lett, 1 288-294.
    Dong, D., Yan, Y., & Wang, Z. (2011, 12-14 Aug. 2011). Application of gray correlative model for surface quality evaluation of strip steel based on the variation coefficient method. Paper presented at the Proceedings of 2011 International Conference on Electronic & Mechanical Engineering and Information Technology.
    Ene, S., & Öztürk, N. (2017). Grey modelling based forecasting system for return flow of end-of-life vehicles. Technological Forecasting and Social Change, 115, 155-166. doi:https://doi.org/10.1016/j.techfore.2016.09.030
    Hamzacebi, C., & Es, H. A. (2014). Forecasting the annual electricity consumption of Turkey using an optimized grey model. Energy, 70, 165-171. doi:https://doi.org/10.1016/j.energy.2014.03.105
    Hsu, Y.-L., Lee, C.-H., & Kreng, V. B. (2010). The application of Fuzzy Delphi Method and Fuzzy AHP in lubricant regenerative technology selection. Expert Systems with Applications, 37(1), 419-425. doi:https://doi.org/10.1016/j.eswa.2009.05.068
    Javed, S. A., Liu, S., Mahmoudi, A., & Nawaz, M. (2018). Patients' satisfaction and public and private sectors' health care service quality in Pakistan: Application of grey decision analysis approaches. The International Journal of Health Planning and Management, 0(0). doi:doi:10.1002/hpm.2629
    Julong, D. (1989). Introduction to grey system theory. The Journal of grey system, 1(1), 1-24.
    Lewis, C. D. (1982). Industrial and business forecasting methods: London: Butterworths.
    Li, B., Yang, W., & Li, X. (2017). Application of combined model with DGM(1,1) and linear regression in grain yield prediction. Grey Systems: Theory and Application, 8(1), 25-34. doi:10.1108/GS-07-2017-0020
    Li, D.C., Lin, W.K., Chen,C.C., Chen, H.Y., Lin., L.S. (2018) Rebuilding sample distributions for small dataset learning, Decis. Support Syst., 105 66-76.
    Li, D.C., Yeh., C.W., Chang, C.J. (2009). An improved grey-based approach for early manufacturing data forecasting, Comput. Ind. Eng., 57 1161-1167.
    Li, S., Ma, X., & Yang, C. (2018). Prediction of spontaneous combustion in the coal stockpile based on an improved metabolic grey model. Process Safety and Environmental Protection, 116, 564-577. doi:https://doi.org/10.1016/j.psep.2018.03.023
    Liu, L., & Wu, L. (2021). Forecasting the renewable energy consumption of the European countries by an adjacent non-homogeneous grey model. Applied Mathematical Modelling, 89, 1932-1948. doi:https://doi.org/10.1016/j.apm.2020.08.080
    Lu, S.-L. (2018). Integrating heuristic time series with modified grey forecasting for renewable energy in Taiwan. Renewable Energy. doi:https://doi.org/10.1016/j.renene.2018.08.092
    Ma, X., Xie, M., Wu, W., Zeng, B., Wang, Y., & Wu, X. (2019). The novel fractional discrete multivariate grey system model and its applications. Applied Mathematical Modelling, 70, 402-424. doi:https://doi.org/10.1016/j.apm.2019.01.039
    Mentzer, J. T., & Cox, J. E. (1984). Familiarity, application, and performance of sales forecasting techniques. Journal of Forecasting, 3(1), 27-36. doi:doi:10.1002/for.3980030104
    Pan, L., Sun, B., & Wang, W. (2011). City Air Quality Forecasting and Impact Factors Analysis Based on Grey Model. Procedia Engineering, 12, 74-79. doi:https://doi.org/10.1016/j.proeng.2011.05.013
    P.W. Murray, B. Agard, M.A. Barajas. (2018). Forecast of individual customer’s demand from a large and noisy dataset, Comput Ind Eng, 118 33-43.
    Rahmani, K., Yavari, M.(2019). Pricing policies for a dual-channel green supply chain under demand disruptions, Comput Ind Eng, 127 493-510.
    S.F. Liu, Y. Lin.(2006). Grey information: theory and practical applications, 1st ed., Springer-Verlag, London, Britain,.
    S. Mao, M. Gao, X. Xiao, M. Zhu. (2016). A novel fractional grey system model and its application, Appl Math Model, 40 5063-5076.
    Song, Q., & Chissom, B. S. (1993). Fuzzy time series and its models. Fuzzy Sets and Systems, 54(3), 269-277. doi:https://doi.org/10.1016/0165-0114(93)90372-O
    Sun, K., Xiao, B., Liu, D., & Wang, J. (2019, 15-20 June 2019). Deep High-Resolution Representation Learning for Human Pose Estimation. Paper presented at the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).
    Wang, Y., Tang, J., & Cao, W. (2011, 15-18 Sept. 2011). Grey prediction model-based food security early warning prediction. Paper presented at the Proceedings of 2011 IEEE International Conference on Grey Systems and Intelligent Services.
    Wu, L., Liu, S., Yao, L., Yan, S., Liu., D. (2013). Grey system model with the fractional order accumulation, Communications in Nonlinear Science and Numerical Simulation, 18 1775-1785.
    Yang, S.-H., & Chen, Y.-P. (2011). Intelligent Forecasting System Using Grey Model Combined with Neural Network. International Journal of Fuzzy Systems, 13(1), 8-15. doi:10.30000/ijfs.201103.0002
    Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8(3), 338-353. doi:https://doi.org/10.1016/S0019-9958(65)90241-X
    Zhao, H., & Guo, S. (2016). An optimized grey model for annual power load forecasting. Energy, 107, 272-286. doi:https://doi.org/10.1016/j.energy.2016.04.009
    Zhao, H., & Lifeng, W. (2020). Forecasting the non-renewable energy consumption by an adjacent accumulation grey model. Journal of Cleaner Production, 275, 124113. doi:https://doi.org/10.1016/j.jclepro.2020.124113
    王永泰. (2016). 以整體趨勢擴散技術為核心之灰預測模型求解面板產業退返品還貨備料問題. (碩士), 國立成功大學, 台南市.
    林萬吉. (1996). 基於灰色系統的物件輪廓影像之斷線復原法. (碩士), 國立臺灣科技大學, 台北市.
    曹銳勤. (2006). Forecasting Analysis by Fuzzy Grey Model GM(1,1). [模糊灰色gm(1,1)預測模式]. 工業工程學刊, 23(5), 415-422. doi:10.29977/jciie.200609.0006
    陳盈融. (2017). 運用德爾菲法探討巨量資料分析成功之影響因素-以全民健保資料庫為例. (碩士), 國立中正大學, 嘉義縣.
    陳秋恭. (2004). 應用模糊類神經網路於穿刺結構之動態訊號分析. (碩士), 國立成功大學, 台南市.
    楊志平. (2003). 灰預測、指數平滑法與預測組合之應用─以台灣地區鮮食鳳梨產地價格為例. (碩士), 國立屏東科技大學, 屏東縣.
    廖景帆. (2012). 演化式模糊關係之模糊時間序列預測模式. (碩士), 國立成功大學, 台南市. Retrieved from https://hdl.handle.net/11296/wkcaf5
    鄭亦君. (2008). 決定性模糊時間序列預測模式之研究. (博士), 國立成功大學, 台南市.
    謝俊嘉. (2009). 灰色系統分析應用於多頻譜影像之分類. (碩士), 國立勤益科技大學, 台中市.

    下載圖示 校內:2024-09-01公開
    校外:2024-09-01公開
    QR CODE