簡易檢索 / 詳目顯示

研究生: 黃至誠
Huang, Chih-Cheng
論文名稱: 血管感壓敏感度與心跳及血壓變異性在頸動脈支架置放術後的病人之分析
Advanced analysis of baroreflex sensitivity and heart rate and blood pressure variabilities in patients with carotid stenting
指導教授: 陳天送
Chen, Tainsong
共同指導教授: 盧成憲
Lu, Chen-Hsien
學位類別: 博士
Doctor
系所名稱: 工學院 - 醫學工程研究所
Institute of Biomedical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 79
中文關鍵詞: 血管感壓反射敏感度頸動脈支架置放術心率及血壓變異性序列方法呼吸效應獨立成分分析交感、副交感平衡
外文關鍵詞: baroreflex sensitivity, carotid stenting, heart rate and blood pressure variabilitivies, sequence method, respiratory effect, independent component analysis, sympathovagal balance
相關次數: 點閱:122下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 血管感壓反射是維持血壓恆定的主要機制。它藉著調整心跳和周邊血管阻力,達到血壓的穩定。血管感壓反射敏感度是對於此反射功能的定量評估,定義為每單位的血壓變化(以毫米汞柱表示)所引起的心率變化(心電圖R-R間期,以毫秒表示)。血管感壓反射敏感度已被廣泛認為可做為評估各種心血管與腦血管疾病病患預後及危險分級的臨床指標。
    頸動脈的硬化和狹窄,已被報告過會伴隨著血管感壓反射敏感度的降低。雖然頸動脈支架置放術已知可有效地治療嚴重的頸動脈狹窄,以避免中風的再發,但有報告指出,這項治療在實施當中或剛做完的短時間內,會引起血管感壓反射功能的異常。然而,這項治療對血管感壓反射功能及心血管自律神經功能的長期影響,目前並不清楚。
    本論文分為三大部分。在第一部分,我們以非侵入性的方法,評估了22位接受過頸動脈支架置放術的病人的血管感壓反射敏感度,及其他的心血管自律神經功能,並將這些數據與另外二組受測者比較,其中一組,是性別與年齡適配的正常對照組;另一組,則是也有嚴重的頸動脈狹窄,卻未接受頸動脈支架置放術的危險條件對照組。我們發現,血管感壓反射敏感度在頸動脈支架置放病人組及危險條件對照組,均顯著的較正常對照組降低,但在頸動脈支架置放病人組及危險條件對照組之間,則無顯著差異。我們因此推論,造成血管感壓反射敏感度降低的原因,是病人的疾病本身,而非頸動脈支架置放術。
    在第二部分,我們欲闡明在第一部分的研究中的一些意外發現。首先,我們發現在不同的血管感壓反射敏感度指標間,有些歧異性的結果。雖然以伐氏操作(Valsalva maneuver)所得的血管感壓反射敏感度指標,在病人組顯示出顯著的降低;但以序列方法(sequence method)分析心率及血壓自然起伏所得的血管感壓反射敏感度指標,在各組之間卻無顯著的差異。另外,這兩個指標之間的相關性,在病人組內被打斷了。我們推測,這二項結果都是因為呼吸的影響所致。因此,我們另外又找了3位頸動脈支架置放術後的病人,與原本的22位,總共25位病人,與相同數目的正常對照組,進行了如第一部分我們所做的檢查及分析。另外,我們將他們心率及血壓自然起伏的序列,以一個阻斷頻率為0.24至0.3赫茲(相當於每分鐘14到18下的呼吸頻率)的帶阻濾波器濾過,再以同樣的序列方法分析濾過後的心率及血壓起伏,得到一個新的血管感壓反射敏感度指標。這個新的指標,與用伐氏操作所得的血管感壓反射敏感度指標,重現了原本在病人組中失去的相關性。我們推論,在個體的血管感壓受器功能降低,可是中樞調控的心臟迷走神經反應卻相對保留的情況下,就如同這些頸動脈支架置放術後的病人,以序列方法分析所得的血管感壓反射敏感度指標,會受到呼吸的影響而產生誤差。
    雖然上述帶阻濾波器的方法,在病人組重現了二個不同方式得到的血管感壓反射敏感度指標的相關性,但這顯然不是個去除呼吸影響的理想方案。因為呼吸的頻率(0.2至0.3赫茲),與高頻的心臟迷走神經調控頻率(0.15至0.4赫茲),大部分重疊。以濾波器濾掉呼吸頻率的同時,將許多該頻率範圍的有用資訊也濾掉了。所以,在最後一部分,我們用獨立成分分析(independent component analysis)的方法,分析了心率與血壓的變異性,試圖找到一個新指標,以用來分辨頸動脈支架置放術後的病人與正常對照組的自律神經狀態。假設心率與血壓的起伏振盪,可以分解為心臟交感神經活性及心臟副交感神經活性二個成分,由獨立成分分析所得的結果,我們便能得到一個表示交感、副交感平衡(sympathovagal balance)的新指標。這個新的指標,在頸動脈支架置放術後的病人與正常人的辨識上,有較佳的鑑別力,且比起傳統由心率變異頻譜分析所得的低高頻能量比所代表的交感、副交感平衡,它似乎是個更好的指標。
    經由這一系列的研究,我們希望能對於頸動脈支架置放術後的病人,其血管感壓反射敏感度及心血管自律神經功能,有個整體的認識。我們並不去決定,這些方法之中哪一個較好,而是去發現這些方法所隱含的更多的生理意義,並評估其局限性。我們希望藉此能幫助臨床醫師,使其更了解這些自律神經功能指標與臨床及生理的關聯;也幫助研究者,使其在各種不同的實驗或臨床狀況下,能選擇更合理的方法來做研究。

    Baroreflex is a key mechanism in blood pressure (BP) homeostasis that maintains stable BP by adjusting heart rate (HR) and total peripheral resistance. Baroreflex sensitivity (BRS) is a quantitative assessment of baroreflex function and thus defined as changes in HR (expressed as milliseconds of R-R interval) in response to changes in systolic BP (mmHg). BRS has been widely accepted as an important clinical indicator for prognosis prediction and risk stratification of patients with various cardiovascular and cerebrovascular diseases.
    Carotid atherosclerosis and stenosis have been reported to be associated with reduced BRS. Although carotid stenting (CAS) have been proven as an effective treatment for severe carotid stenosis in prevention of further stroke, the intervention has been reported to cause baroreflex dysfunction during or shortly after this procedure. However, little is known about long-term outcomes of baroreceptor and cardiovascular autonomic function in patients with CAS.
    There are 3 main parts in this thesis. In the first part, we assessed BRS and other cardiovascular autonomic functions by using non-invasive methods in 22 adult patients who had received CAS for 6 months or more and compared their data with 2 other groups, the one with sex and age matched normal volunteer subjects (normal control group) and the other with patients having severe carotid stenosis but without CAS (risk control group). We found that baroreceptor function is significantly reduced in groups of CAS patients and risk control patients compared to normal control subjects while there is no significant difference between groups of CAS patients and risk controls. Thus we suggest that reduced baroreceptor function in CAS patients may be due to underlying diseases rather than the CAS procedure.
    In the second part, we aimed to elucidate some incidental findings in the first part of our study: 1) diverse results between the two BRS parameters by different methods, BRS_VM, which is obtained from valsalva maneuver, and BRS_seq, which is computed from sequence method by analysis of spontaneous oscillations of HR and BP; while BRS_VM shows significant decrement in patient groups compared to the normal subjects, BRS_seq dose not reveal significant difference between CAS patients and normal subjects; and 2) interruption of correlation between these 2 BRS parameters in patient groups. We suggested that these results are due to interference of respiration. Therefore, we enrolled 3 more CAS patients (25 totally) as well as the same number of normal subjects to receive the similar tests as we had done in the first part. We had their oscillations of HR and BP filtered by a band-stop filter with stop-band from 0.24 to 0.3 Hz, corresponding to respiration rate of 14-18 cycles per minute. Sequence method was done again on the filtered sequences to get a new BRS parameter, BRS_seq_r. The correlation between parameters of BRS_VM and BRS_seq_r in patient group is then restored. We conclude that there is a bias from respiratory effect in computing spontaneous BRS using sequence method when the subjects have impaired baroreflex function with relatively preserved centrally mediated cardiovagal function, such as patients with CAS.
    Although the band-stop filter restored the correlation between two BRS parameter obtained from different methods, it is not an ideal solution to avoid respiratory effect. Because the respiratory frequency (0.2-0.3 Hz) and the high-frequency cardiovagal modulation (0.15-0.4 Hz) are mostly overlapped, we may loss too much information in the overlapping band using this filter. Thus in the last part, we analyzed variabilities of HR and BP using independent component analysis (ICA) and tried to find new parameters useful in discriminating CAS patients with normal subjects. Assuming that the oscillations of HR and BP can be decomposed to cardiac sympathetic and cardiac parasympathetic activities, we have a novel index of sympathovagal balance from the computation of ICA. The new index has higher discrimination power in distinguishing the autonomic status of CAS patients from that of the control subjects and seems to be a better index than the conventional one, the ratio of low-to-high frequency spectra power of HR variability.
    Through these series of studies, we aim to have a global scope on BRS as well as cardiovascular autonomic functions of CAS patients. We never try to determine which is a “better” method, but, instead, to explore more physiological implication of these methods and to evaluate their limitations. We hope it will do some help for physicians to learn more clinical and physiological relevance of these autonomic parameters, and for researchers to have a rational choice of either method in any given experimental or clinical situation.

    中文摘要 I Abstract IV Preface and Acknowledgement VIII Table of Contents X List of Tables XIII List of Figures XIV Abbreviation Table XV Chapter 1 Introduction 1 1.1 Baroreflex sensitivity 1 1.2 Assessment of baroflex sensitivity 2 1.3 Carotid stenting 4 1.4 Literature review for baroreflex sensitivity in patients with carotid stenting 5 1.5 Motivation and objectives 6 Chapter 2 Assessing baroreflex sensitivity in patients with carotid stenting 8 2.1 Study design 8 2.2 Materials and methods 9 2.2.1 Inclusion and exclusion criteria of patients 9 2.2.2 Study protocol 10 2.2.3 Assessment of cardiovascular autonomic function, BRS, and HRV 10 2.2.4 Statistics 12 2.3 Results 13 2.3.1 Characteristics and demographic data of the study subjects 13 2.3.2 Parameters of cardiovascular autonomic function and BRS 14 2.3.3 Parameters of HRV 16 2.3.4 Correlation between different parameters of BRS 17 2.3.5 Post hoc power calculations 17 2.3.6 Outcome of study patients 17 2.4 Discussion 19 Chapter 3 The effect of respiration in estimation of baroreflex sensitivity in patients with carotid stenting 26 3.1 Background 26 3.2 Materials and methods 28 3.2.1 Subjects 28 3.2.2 Study protocol 28 3.2.3 Cardiovascular autonomic parameters 29 3.2.4 Computation of BRS 29 3.2.5 Statistics 30 3.3 Results 31 3.3.1 Characteristics and demographic data of the study subjects 31 3.3.2 Comparison and correlation between different BRS parameters 32 3.3.3 Relationship between BRS parameters and RSA 34 3.3.4 Comparison of other cardiovascular autonomic indices 36 3.3.5 Characteristics of band-stop filter and results of spectral analysis 36 3.4 Discussion 40 Chapter 4 Application of independent component analysis in heart rate and blood pressure variability 45 4.1 Background 45 4.1.1 Cardiac sympathetic and parasympathetic activity 45 4.1.2 ICA 46 4.1.3 Sympathovagal balance 47 4.2 Materials and methods 50 4.2.1 Subjects 50 4.2.2 Study protocol 50 4.2.3 Data processing and computation of ICA 50 4.2.4 Statistics 51 4.3 Results 53 4.3.1 Characteristics and demographic data of the study subjects 53 4.3.2 Computation results of ICA 54 4.3.3 HRV and ICA parameters of study subjects 56 4.3.4 HRV and ICA parameters from the EuroBavar data set 59 4.3.5 Comparison and correlations between parameters of sympathovagal balance 61 4.4 Discussion 64 Chapter 5 Conclusions and future work 70 5.1 Conclusions 70 5.2 Future work 72 References 73

    [1] “Endarterectomy for asymptomatic carotid artery stenosis. Executive Committee for the Asymptomatic Carotid Atherosclerosis Study,” JAMA, vol. 273, no. 18, pp. 1421-8, May 10, 1995.
    [2] “Heart rate variability. Standards of measurement, physiological interpretation, and clinical use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology,” Eur Heart J, vol. 17, no. 3, pp. 354-81, Mar, 1996.
    [3] “Randomised trial of endarterectomy for recently symptomatic carotid stenosis: final results of the MRC European Carotid Surgery Trial (ECST),” Lancet, vol. 351, no. 9113, pp. 1379-87, May 9, 1998.
    [4] “Endovascular versus surgical treatment in patients with carotid stenosis in the Carotid and Vertebral Artery Transluminal Angioplasty Study (CAVATAS): a randomised trial,” Lancet, vol. 357, no. 9270, pp. 1729-37, Jun 2, 2001.
    [5] Acharya, U. R., Joseph, K. P., Kannathal, N. et al., “Heart rate variability: a review,” Med Biol Eng Comput, vol. 44, no. 12, pp. 1031-51, Dec, 2006.
    [6] Airaksinen, K. E., Hartikainen, J. E., Niemela, M. J. et al., “Valsalva manoeuvre in the assessment of baroreflex sensitivity in patients with coronary artery disease,” Eur Heart J, vol. 14, no. 11, pp. 1519-23, Nov, 1993.
    [7] Akselrod, S., Gordon, D., Ubel, F. A. et al., “Power spectrum analysis of heart rate fluctuation: a quantitative probe of beat-to-beat cardiovascular control,” Science, vol. 213, no. 4504, pp. 220-2, Jul 10, 1981.
    [8] Azuma, Y., Imai, K., Oda, K. et al., “[Case of baroreflex failure after bilateral revascularization of the cervical carotid artery],” Rinsho Shinkeigaku, vol. 47, no. 10, pp. 657-61, Oct, 2007.
    [9] Barnett, H. J., Taylor, D. W., Eliasziw, M. et al., “Benefit of carotid endarterectomy in patients with symptomatic moderate or severe stenosis. North American Symptomatic Carotid Endarterectomy Trial Collaborators,” N Engl J Med, vol. 339, no. 20, pp. 1415-25, Nov 12, 1998.
    [10] Baselli, G., Cerutti, S., Civardi, S. et al., “Cardiovascular variability signals: towards the identification of a closed-loop model of the neural control mechanisms,” IEEE Trans Biomed Eng, vol. 35, no. 12, pp. 1033-46, Dec, 1988.
    [11] Cevese, A., Gulli, G., Polati, E. et al., “Baroreflex and oscillation of heart period at 0.1 Hz studied by alpha-blockade and cross-spectral analysis in healthy humans,” J Physiol, vol. 531, no. Pt 1, pp. 235-44, Feb 15, 2001.
    [12] Chao, A. C., Chern, C. M., Kuo, T. B. et al., “Noninvasive assessment of spontaneous baroreflex sensitivity and heart rate variability in patients with carotid stenosis,” Cerebrovasc Dis, vol. 16, no. 2, pp. 151-7, 2003.
    [13] Chapleau, M. W., and Abboud, F. M., “Contrasting effects of static and pulsatile pressure on carotid baroreceptor activity in dogs,” Circ Res, vol. 61, no. 5, pp. 648-58, Nov, 1987.
    [14] Chen, R. Y., Fan, F. C., Schuessler, G. B. et al., “Baroreflex control of heart rate in humans during nitroprusside-induced hypotension,” Am J Physiol, vol. 243, no. 1, pp. R18-24, Jul, 1982.
    [15] Chiu, H. W., and Hsu, C. Y., "Applying independent component analysis to heart rate and blood pressure variations." pp. 579-82.
    [16] Coward, L. J., Featherstone, R. L., and Brown, M. M., “Safety and efficacy of endovascular treatment of carotid artery stenosis compared with carotid endarterectomy: a Cochrane systematic review of the randomized evidence,” Stroke, vol. 36, no. 4, pp. 905-11, Apr, 2005.
    [17] De Vera, L., and Gonzalez, J., “Power spectral analysis of short-term RR interval and arterial blood pressure oscillations in the lizard, Gallotia galloti: effects of sympathetic blockade,” J Exp Zool, vol. 283, no. 2, pp. 113-20, Feb 1, 1999.
    [18] deBoer, R. W., Karemaker, J. M., and Strackee, J., “Hemodynamic fluctuations and baroreflex sensitivity in humans: a beat-to-beat model,” Am J Physiol, vol. 253, no. 3 Pt 2, pp. H680-9, Sep, 1987.
    [19] Dehn, T. C., and Angell-James, J. E., “Long-term effect of carotid endarterectomy on carotid sinus baroreceptor function and blood pressure control,” Br J Surg, vol. 74, no. 11, pp. 997-1000, Nov, 1987.
    [20] Dekker, J. M., Schouten, E. G., Klootwijk, P. et al., “Heart rate variability from short electrocardiographic recordings predicts mortality from all causes in middle-aged and elderly men. The Zutphen Study,” Am J Epidemiol, vol. 145, no. 10, pp. 899-908, May 15, 1997.
    [21] Di Rienzo, M., Castiglioni, P., Mancia, G. et al., “Critical appraisal of indices for the assessment of baroreflex sensitivity,” Methods Inf Med, vol. 36, no. 4-5, pp. 246-9, Dec, 1997.
    [22] Douglas, S. C., “A statistical convergence analysis of the fastica algorithm for two-source mixtures,” in Conference Record Thirty-Ninth Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA. USA, 2005, pp. 335-339.
    [23] Drugs.com. http://www.drugs.com.
    [24] Eckberg, D. L., “Sympathovagal balance: a critical appraisal,” Circulation, vol. 96, no. 9, pp. 3224-32, Nov 4, 1997.
    [25] Eckberg, D. L., Rea, R. F., Andersson, O. K. et al., “Baroreflex modulation of sympathetic activity and sympathetic neurotransmitters in humans,” Acta Physiol Scand, vol. 133, no. 2, pp. 221-31, Jun, 1988.
    [26] Goldberger, J. J., “Sympathovagal balance: how should we measure it?,” Am J Physiol, vol. 276, no. 4 Pt 2, pp. H1273-80, Apr, 1999.
    [27] Grassi, G., Seravalle, G., Cattaneo, B. M. et al., “Sympathetic activation and loss of reflex sympathetic control in mild congestive heart failure,” Circulation, vol. 92, no. 11, pp. 3206-11, Dec 1, 1995.
    [28] Gribbin, B., Pickering, T. G., Sleight, P. et al., “Effect of age and high blood pressure on baroreflex sensitivity in man,” Circ Res, vol. 29, no. 4, pp. 424-31, Oct, 1971.
    [29] Hirschl, M., Hirschl, M. M., Magometschnigg, D. et al., “Arterial baroreflex sensitivity and blood pressure variabilities before and after carotid surgery,” Klin Wochenschr, vol. 69, no. 16, pp. 763-8, Oct 18, 1991.
    [30] Hirschl, M., Kundi, M., and Blazek, G., “Five-year follow-up of patients after thromboendarterectomy of the internal carotid artery: Relevance of baroreceptor sensitivity,” Stroke, vol. 27, no. 7, pp. 1167-72, Jul, 1996.
    [31] Hirschl, M., Kundi, M., Hirschl, M. M. et al., “Blood pressure responses after carotid surgery: relationship to postoperative baroreceptor sensitivity,” Am J Med, vol. 94, no. 5, pp. 463-8, May, 1993.
    [32] Hoffmann, J., Grimm, W., Menz, V. et al., “Heart rate variability and baroreflex sensitivity in idiopathic dilated cardiomyopathy,” Heart, vol. 83, no. 5, pp. 531-8, May, 2000.
    [33] Honzikova, N., Fiser, B., and Honzik, J., “Noninvasive determination of baroreflex sensitivity in man by means of spectral analysis,” Physiol Res, vol. 41, no. 1, pp. 31-7, 1992.
    [34] Hull, S. S., Jr., Vanoli, E., Adamson, P. B. et al., “Exercise training confers anticipatory protection from sudden death during acute myocardial ischemia,” Circulation, vol. 89, no. 2, pp. 548-52, Feb, 1994.
    [35] Hyvarinen, A., “Fast and robust fixed-point algorithms for independent component analysis,” IEEE Trans Neural Netw, vol. 10, no. 3, pp. 626-34, 1999.
    [36] Hyvarinen, A., Karhunen, J., and Oja, E., Independent Component Analysis 1ed.: John Wiley & Sons, Inc., 2001.
    [37] Iriarte, J., Urrestarazu, E., Valencia, M. et al., “Independent component analysis as a tool to eliminate artifacts in EEG: a quantitative study,” J Clin Neurophysiol, vol. 20, no. 4, pp. 249-57, Jul-Aug, 2003.
    [38] James, C. J., and Hesse, C. W., “Independent component analysis for biomedical signals,” Physiol Meas, vol. 26, no. 1, pp. R15-39, Feb, 2005.
    [39] Janszky, I., Ericson, M., Mittleman, M. A. et al., “Heart rate variability in long-term risk assessment in middle-aged women with coronary heart disease: The Stockholm Female Coronary Risk Study,” J Intern Med, vol. 255, no. 1, pp. 13-21, Jan, 2004.
    [40] Japundzic, N., Grichois, M. L., Zitoun, P. et al., “Spectral analysis of blood pressure and heart rate in conscious rats: effects of autonomic blockers,” J Auton Nerv Syst, vol. 30, no. 2, pp. 91-100, Jun, 1990.
    [41] Kirchheim, H. R., “Systemic arterial baroreceptor reflexes,” Physiol Rev, vol. 56, no. 1, pp. 100-77, Jan, 1976.
    [42] La Rovere, M. T., Bigger, J. T., Jr., Marcus, F. I. et al., “Baroreflex sensitivity and heart-rate variability in prediction of total cardiac mortality after myocardial infarction. ATRAMI (Autonomic Tone and Reflexes After Myocardial Infarction) Investigators.[see comment],” Lancet, vol. 351, no. 9101, pp. 478-84, Feb 14, 1998.
    [43] Laude, D., Weise, F., Girard, A. et al., “Spectral analysis of systolic blood pressure and heart rate oscillations related to respiration,” Clin Exp Pharmacol Physiol, vol. 22, no. 5, pp. 352-7, May, 1995.
    [44] Li, Z. Y., Liu, S. R., Xie, Z. X. et al., “Using independent component analysis to research heart rate variability,” Conf Proc IEEE Eng Med Biol Soc, vol. 5, pp. 5532-5, 2005.
    [45] Lipman, R. D., Salisbury, J. K., and Taylor, J. A., “Spontaneous indices are inconsistent with arterial baroreflex gain,” Hypertension, vol. 42, no. 4, pp. 481-7, Oct, 2003.
    [46] Lord, S. W., Clayton, R. H., Hall, M. C. et al., “Reproducibility of three different methods of measuring baroreflex sensitivity in normal subjects,” Clin Sci (Lond), vol. 95, no. 5, pp. 575-81, Nov, 1998.
    [47] Low, P. A., “Composite autonomic scoring scale for laboratory quantification of generalized autonomic failure,” Mayo Clin Proc, vol. 68, no. 8, pp. 748-52, Aug, 1993.
    [48] Low, P. A., “Testing the autonomic nervous system,” Semin Neurol, vol. 23, no. 4, pp. 407-21, Dec, 2003.
    [49] Malberg, H., Wessel, N., Hasart, A. et al., “Advanced analysis of spontaneous baroreflex sensitivity, blood pressure and heart rate variability in patients with dilated cardiomyopathy,” Clin Sci (Lond), vol. 102, no. 4, pp. 465-73, Apr, 2002.
    [50] Malliani, A., Pagani, M., Lombardi, F. et al., “Cardiovascular neural regulation explored in the frequency domain,” Circulation, vol. 84, no. 2, pp. 482-92, Aug, 1991.
    [51] Malliani, A., Pagani, M., Montano, N. et al., “Sympathovagal balance: a reappraisal,” Circulation, vol. 98, no. 23, pp. 2640-3, Dec 8, 1998.
    [52] Mancia, G., and Mark, A. L., "Arterial baroreflexes in humans," Handbook of physiology, Section 2. The cardiovascular system IV, J. T. Shepherd and F. M. Abboud, eds., pp. 755-793, 1983.
    [53] Mangin, L., Medigue, C., Merle, J. C. et al., “Cardiac autonomic control during balloon carotid angioplasty and stenting,” Can J Physiol Pharmacol, vol. 81, no. 10, pp. 944-51, Oct, 2003.
    [54] Milic, M., Sun, P., Liu, F. et al., “A comparison of pharmacologic and spontaneous baroreflex methods in aging and hypertension,” J Hypertens, vol. 27, no. 6, pp. 1243-51, Jun, 2009.
    [55] Mohammed, N., and Anand, S. S., “Prevention of disabling and fatal strokes by successful carotid endarterectomy in patients without recent neurological symptoms: randomized controlled trial. MRC asymptomatic carotid surgery trial (ACST) collaborative group. Lancet 2004; 363: 1491-502,” Vasc Med, vol. 10, no. 1, pp. 77-8, Feb, 2005.
    [56] Nasr, N., Pavy-Le Traon, A., and Larrue, V., “Baroreflex sensitivity is impaired in bilateral carotid atherosclerosis,” Stroke, vol. 36, no. 9, pp. 1891-5, Sep, 2005.
    [57] Naylor, A. R., Bolia, A., Abbott, R. J. et al., “Randomized study of carotid angioplasty and stenting versus carotid endarterectomy: a stopped trial,” J Vasc Surg, vol. 28, no. 2, pp. 326-34, Aug, 1998.
    [58] Pagani, M., Lombardi, F., Guzzetti, S. et al., “Power spectral analysis of heart rate and arterial pressure variabilities as a marker of sympatho-vagal interaction in man and conscious dog,” Circ Res, vol. 59, no. 2, pp. 178-93, Aug, 1986.
    [59] Parati, G., Di Rienzo, M., and Mancia, G., “Neural cardiovascular regulation and 24-hour blood pressure and heart rate variability,” Ann N Y Acad Sci, vol. 783, pp. 47-63, Aug 15, 1996.
    [60] Parati, G., Di Rienzo, M., and Mancia, G., “How to measure baroreflex sensitivity: from the cardiovascular laboratory to daily life.[see comment],” Journal of Hypertension, vol. 18, no. 1, pp. 7-19, Jan, 2000.
    [61] Parlow, J., Viale, J. P., Annat, G. et al., “Spontaneous cardiac baroreflex in humans. Comparison with drug-induced responses,” Hypertension, vol. 25, no. 5, pp. 1058-68, May, 1995.
    [62] Pickering, T. G., and Sleight, P., “Quantitative index of baroreflex activity in normal and hypertensive subjects using Valsalva's manoeuvre,” Br Heart J, vol. 31, no. 3, pp. 392, May, 1969.
    [63] Pitzalis, M. V., Mastropasqua, F., Massari, F. et al., “Effect of respiratory rate on the relationships between RR interval and systolic blood pressure fluctuations: a frequency-dependent phenomenon,” Cardiovasc Res, vol. 38, no. 2, pp. 332-9, May, 1998.
    [64] Porta, A., Baselli, G., Rimoldi, O. et al., “Assessing baroreflex gain from spontaneous variability in conscious dogs: role of causality and respiration,” Am J Physiol Heart Circ Physiol, vol. 279, no. 5, pp. H2558-67, Nov, 2000.
    [65] Rimoldi, O., Pierini, S., Ferrari, A. et al., “Analysis of short-term oscillations of R-R and arterial pressure in conscious dogs,” Am J Physiol, vol. 258, no. 4 Pt 2, pp. H967-76, Apr, 1990.
    [66] Robinson, T. G., Dawson, S. L., Eames, P. J. et al., “Cardiac baroreceptor sensitivity predicts long-term outcome after acute ischemic stroke,” Stroke, vol. 34, no. 3, pp. 705-12, Mar, 2003.
    [67] Rudas, L., Crossman, A. A., Morillo, C. A. et al., “Human sympathetic and vagal baroreflex responses to sequential nitroprusside and phenylephrine,” Am J Physiol, vol. 276, no. 5 Pt 2, pp. H1691-8, May, 1999.
    [68] Scheffer, G. J., TenVoorde, B. J., Karemaker, J. M. et al., “Effects of epidural analgesia and atropine on heart rate and blood pressure variability: implications for the interpretation of beat-to-beat fluctuations,” Eur J Anaesthesiol, vol. 11, no. 2, pp. 75-80, Mar, 1994.
    [69] Shannon, T. T., McNames, J., Ellenby, M. S. et al., "Modeling respiration from blood pressure waveform signals: An independent component approach." pp. 200-201.
    [70] Sigaudo-Roussel, D., Evans, D. H., Naylor, A. R. et al., “Deterioration in carotid baroreflex during carotid endarterectomy,” J Vasc Surg, vol. 36, no. 4, pp. 793-8, Oct, 2002.
    [71] Smyth, H. S., Sleight, P., and Pickering, G. W., “Reflex regulation of arterial pressure during sleep in man. A quantitative method of assessing baroreflex sensitivity,” Circ Res, vol. 24, no. 1, pp. 109-21, Jan, 1969.
    [72] Tiinanen, S., Tulppo, M., and Seppanen, T., “Reducing the effect of respiration in baroreflex sensitivity estimation with adaptive filtering,” IEEE Trans Biomed Eng, vol. 55, no. 1, pp. 51-9, Jan, 2008.
    [73] Timmers, H. J., Buskens, F. G., Wieling, W. et al., “Long-term effects of unilateral carotid endarterectomy on arterial baroreflex function,” Clin Auton Res, vol. 14, no. 2, pp. 72-9, Apr, 2004.
    [74] Trimarco, B., Volpe, M., Ricciardelli, B. et al., “Valsalva maneuver in the assessment of baroreflex responsiveness in borderline hypertensives,” Cardiology, vol. 70, no. 1, pp. 6-14, 1983.
    [75] Tsuji, H., Venditti, F. J., Jr., Manders, E. S. et al., “Reduced heart rate variability and mortality risk in an elderly cohort. The Framingham Heart Study,” Circulation, vol. 90, no. 2, pp. 878-83, Aug, 1994.
    [76] Ursino, M., and Magosso, E., “Role of short-term cardiovascular regulation in heart period variability: a modeling study,” Am J Physiol Heart Circ Physiol, vol. 284, no. 4, pp. H1479-93, Apr, 2003.
    [77] Vetter, R., Vesin, J. M., Celka, P. et al., “Observer of the human cardiac sympathetic nerve activity using noncausal blind source separation,” IEEE Trans Biomed Eng, vol. 46, no. 3, pp. 322-30, Mar, 1999.
    [78] Wallin, B. G., Esler, M., Dorward, P. et al., “Simultaneous measurements of cardiac noradrenaline spillover and sympathetic outflow to skeletal muscle in humans,” J Physiol, vol. 453, pp. 45-58, 1992.
    [79] Wang, P. S., Wu, Y. T., Hung, C. I. et al., “Early detection of periodic sharp wave complexes on EEG by independent component analysis in patients with Creutzfeldt-Jakob disease,” J Clin Neurophysiol, vol. 25, no. 1, pp. 25-31, Feb, 2008.
    [80] Wholey, M. H., Wholey, M., Mathias, K. et al., “Global experience in cervical carotid artery stent placement,” Catheter Cardiovasc Interv, vol. 50, no. 2, pp. 160-7, Jun, 2000.
    [81] Wholey, M. H., and Wu, W. C., “Current status in cervical carotid artery stent placement,” J Cardiovasc Surg (Torino), vol. 50, no. 1, pp. 29-37, Feb, 2009.
    [82] Yakhou, L., Constant, I., Merle, J. C. et al., “Noninvasive investigation of autonomic activity after carotid stenting or carotid endarterectomy,” J Vasc Surg, vol. 44, no. 3, pp. 472-9, Sep, 2006.
    [83] Ylipaavalniemi, J., “Variability of Independent Components in functional Magnetic Resonance Imaging,” Department of Computer Science and Engineering Helsinki University of Technology, Helsinki, Finland, 2005.

    下載圖示 校內:2012-08-16公開
    校外:2012-08-16公開
    QR CODE