簡易檢索 / 詳目顯示

研究生: 陳怡鈞
Chen, I-Chun
論文名稱: 可調控式高溫刺激移除骨整合植體的創新治療技術
Develop a novel technique to remove osseointegrated implants by controlled high temperature
指導教授: 袁國
Yuan, Kuo
李澤民
Lee, Tzer-Min
學位類別: 碩士
Master
系所名稱: 醫學院 - 口腔醫學研究所
Institute of Oral Medicine
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 63
中文關鍵詞: 失敗植體移除植體熱刺激迷你豬
外文關鍵詞: failed dental implant, implant explantation, heat stimuli, mini-pig
相關次數: 點閱:117下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來隨著牙科植體的普及,雖然回顧文獻植牙的成功率大多在九成以上, 卻延伸出許多併發症和失敗案例,成為牙醫師需要面對的重大課題。現階段移 除骨整合失敗植體的方式大多為使用高反轉扭力套件逆轉植體或環形鋸切削 植體周邊骨頭,然而對於已良好骨整合之植體,常導致執行困難且傷害較多周 圍組織。文獻中指出當骨頭達到攝氏 47 度時,持續 1 至 5 分鐘,會使骨組織 受到不可逆的破壞 ; 當溫度到達攝氏 53 至 70 度時,骨頭中的鹼性磷酸酶產生 變性,造成骨頭缺血並且影響修復再生能力。而文獻病例報告中,曾運用電刀 產生熱能傳導至植體破壞植體骨頭介面,促進失敗的植體移除。
    因此我們運用蘭嶼迷你豬模式,以可調控式高溫和低溫刺激造成植體周遭 骨頭微發炎變性的方式來促進骨整合植體移除。首先建立有限元分析模型,模 擬植體在骨頭裡的熱傳導情形。另外在體外將植體植入新鮮豬下顎骨,分別以 攝氏 55 和 100 度加熱,並且以熱電偶紀錄植體表面溫度的分佈與有限元素分 析的結果相對照 ; 進一步於蘭嶼迷你豬進行活體實驗,在拔除第一小臼齒、第 二乳臼齒、第三乳臼齒後一個月,植入 12 支鈦金屬植體,分成(1)控制組-無熱 處理(2)實驗組-低溫加熱組: 55 度(3)實驗組-高溫加熱組: 100 度。等待兩個月後,
    I
    隨機分別以攝氏 55 和 100 度刺激,三天後犧牲。以反轉扭力測試、電子顯微鏡 觀察植體表面型態和蘇木素-伊紅做組織學染色做觀察。
    結果由放射線影像中可看到有九支植體植在未萌發牙胚上導致骨整合失 敗。在平均反轉扭力值結果分別為控制組:18.25 牛頓- 公分; 攝氏 55 度: 11 牛頓 - 公分; 攝氏 100 度: 95 牛頓- 公分,並無因熱刺激造成植體骨頭介面破壞而降 低,推測結果與植牙區骨整合與否較有相關。在電子顯微鏡下,低溫加熱組可 觀察到殘餘骨塊於植體根尖處,而高溫加熱組則呈現部分植體表面毀損變形。 組織學巨觀下可見攝氏 55 度組別頸部和 100 度整隻植體周圍骨頭有充血情形, 並藉由微觀切片觀察到 100 度組別比較 55 度組別有較明顯發炎細胞浸潤和骨 頭細胞變化情形。而未來應建立得以達到良好植體區塊模型,繼續探討不同溫 度對於骨頭刺激的反應和觀察相對應骨頭癒合情形。

    In daily dental practice, greater use of dental implants is associated with increased number of complications and failures. Up to date, techniques of high reverse torque and trephine for bone removal around implants are utilized mostly in dealing with failed implants. However, it is a difficult task and may be a relatively traumatic procedure. The literatures indicated that heating up to 47 oC could be considered as the optimal limit that bone can withstand without necrosis and temperatures ranging from 56°C to 70°C is deleterious to bone tissue since alkaline phosphatase (AP) is denatured at that level. Besides, heat induced localized thermal necrosis for weakening the bone/implant interface by application of an ultrahigh frequency electrosurgical device was reported in some clinical cases. Therefore, we proposed that controlled high temperature may induce mild thermal stimuli to the peri-implant bone which poses mild inflammation and denaturation of collagen matrix in a porcine model for facilitating failed implants removal.
    Initially, a thermal simulation model with a finite element method (FEM) was constructed to evaluate thermal distribution throughout the implant/bone interface. Additionally, titanium dental implants were installed in fresh porcine specimens and heat treated at 55°C and 100°C respectively. The temperature was monitored by the thermocouples. Later, In vivo study, bilateral deciduous mandibular molars and permanent first premolar were extracted from two mini pigs following 1-month healing. 12 titanium implants were inserted and left to heal for another 2 months. The study was divided into three different groups. (1) control group—no heat application. (2) test group—LH: low heat application (55°C). (3) test group—HH: high heat application (100°C). Heating was
    III
    performed randomly through the implant healing abutments. The mini pigs were euthanized 3 days later. Radiographic analysis, removal torque value (RTV) measurement, implant surface topography evaluation by scanning electron microscope (SEM) and histologic analysis were evaluated.
    In finite element simulation, the outer surface of implant from LH and HH group were gradually heated to 53°C and 94°C respectively. Because of the adiabatic effect and the heat was given from the top of the implant, the heat was transferred much further over the cervical part than the apical part. In vitro study, the results shows that the 55°C group generated maximum temperatures of 53~57°C at the cervical part of the implants, while the 100°C group yielded 93~96°C. From the radiographic films, nine implants were inserted on the erupting tooth bud. Mean reverse torque value measurements were control: 18.25 Ncm; 50°C: 11 Ncm; 100°C: 95Ncm which were more relevant to the condition of predetermined implant site. Hyperemia of peri-implant bone over cervical 3rd in LH group and throughout the entire implant in HH group were observed in gross view. In histologic analysis, infiltration of inflammatory cells and osteogenic cells changes in microscale were more pronounce in HH group than LH group. Bone remodeling and healing process of heat treated bones with various heat stimuli should be further investigated in the future study.

    中文摘要 I Abstract III 致謝 V Contents VI Table contents IX Figure contents X Abbreviations XII Chapter 1. Introduction 1 1.1 Background 1 1.1.1 Failed Dental Implants 1 1.1.2 Removal Techniques for Failed Dental Implants 2 1.1.3 Reaction of Bone to Thermal Stimuli 3 1.1.4 Finite Element Method (FEM) 5 1.1.5 Animal Selection 6 1.2 Motivation 8 1.3 Objective/ Aim 9 Chapter 2. Materials and Methods 10 2.1 The Experimental Reagent 10 2.2 The Experimental Instrument 11 2.3 The Heating Element 12 2.4 Finite Element Simulation of Bone Temperatures for Heat Stimuli 12 2.4.1 Physical and Thermal Properties of Materials 12 2.4.2 Finite Elment Model 13 2.5 In Vitro Bone Specimen (Pig Mandible) Temperature Evaluation 15 2.5.1 Experimental Design 15 2.5.2 Experimental Procedure 15 2.6 Animals Study 16 2.6.1 Animals and Anesthesia 16 2.6.2 Surgical Procedure 17 2.7 Radiographic Analysis 18 2.8 Specimen Preparation 18 2.9 Removal Torque Value Measurement 19 2.10 Implant Topographic Observation 19 2.11 Histological Analysis 20 2.11.1 Materials 20 2.11.2 Methods 20 Chapter 3. Results 22 3.1 Finite Element Analysis 22 3.2 Temperature Evaluation of Bone Specimen (Pig Mandible) 22 3.3 Clinical Findings 23 3.4 Radiographic Analysis 23 3.5 Removal Torque Measurement 24 3.6 Topographic Observation 24 3.7 Gross View Analysis 25 3.8 Histologic Analysis 26 Chapter 4. Discussion 27 4.1 Study Design 27 4.1.1 Design of the Heating Element 27 4.1.2 Temperature Monitoring Method 27 4.1.3 Animal Experiment-Age and Dentition 28 4.1.4 Healing Time and Osseointegration 30 4.2 Finite Element Analysis 33 4.3 Removal Torque Test 34 4.4 Histologic Analysis 35 Chapter 5. Conclusion 38 Chapter 6. References 39 Table 1. Group Distribution and Denomination 45 Figure 1. Study Flow Chart. 46 Figure 2. Study Time Table <In Vivo Study>. 47 Figure 3. The Heating Element. 48 Figure 4. FEM Model Set Up. 49 Figure 5. In Vitro Bone Specimen (Pig Mandible) Temperature Evaluation. 50 Figure 6. Surgical Procedures: Extraction. 51 Figure 7. Surgical Procedures: Implants Insertion. 52 Figure 8. Surgical Procedures: Omplants 2nd Stage and Heat Application. 53 Figure 9. Specimens After Sacrifice. 54 Figure 10. Removal Torque Measurement. 55 Figure 11. The Simulation of Temperature to Time. 56 Figure 12. In Vitro Experiment: Temperature Evaluation of Bone Specimen. 57 Figure 13. Radiogram. 58 Figure 14. Removal Torque Value. 59 Figure 15. Surface Topography Observed by SEM. 60 Figure 16. Results of Energy Dispersive Spectrometer. 61 Figure 17. Gross View Analysis. 62 Figure 18. Histological Analysis. 63

    Aerssens, J., S. Boonen, G. Lowet and J. Dequeker (1998). "Interspecies differences in bone composition, density, and quality: potential implications for in vivo bone research." Endocrinology 139(2): 663-670.
    Albrektsson, T., P. I. Branemark, H. A. Hansson and J. Lindstrom (1981). "Osseointegrated titanium implants. Requirements for ensuring a long-lasting, direct bone-to-implant anchorage in man." Acta Orthop Scand 52(2): 155-170.
    Albrektsson, T., C. Dahlin, T. Jemt, L. Sennerby, A. Turri and A. Wennerberg (2014). "Is marginal bone loss around oral implants the result of a provoked foreign body reaction?" Clin Implant Dent Relat Res 16(2): 155-165.
    Anitua, E., A. Murias-Freijo and M. H. Alkhraisat (2016). "Conservative Implant Removal for the Analysis of the Cause, Removal Torque, and Surface Treatment of Failed Nonmobile Dental Implants." J Oral Implantol 42(1): 69-77.
    Augustin, G., S. Davila, T. Udiljak, D. S. Vedrina and D. Bagatin (2009). "Determination of spatial distribution of increase in bone temperature during drilling by infrared thermography: preliminary report." Arch Orthop Trauma Surg 129(5): 703-709.
    Baker, R., M. Whitehouse, M. Kilshaw, M. Pabbruwe, R. Spencer, A. Blom and G. Bannister (2011). "Maximum temperatures of 89 degrees C recorded during the mechanical preparation of 35 femoral heads for resurfacing." Acta Orthop 82(6): 669-673.
    Berketa, J. W., R. S. Hirsch, D. Higgins and H. James (2010). "Radiographic recognition of dental implants as an aid to identifying the deceased." J Forensic Sci 55(1): 66-70.
    Berman, A. T., J. S. Reid, D. R. Yanicko, Jr., G. C. Sih and M. R. Zimmerman (1984). "Thermally induced bone necrosis in rabbits. Relation to implant failure in humans." Clin Orthop Relat Res(186): 284-292.
    Birkenfeld, F., M. E. Becker, B. Kurz, S. Harder, M. Kern and R. Lucius (2010). "Changes in human mandibular bone morphology after heat application." Ann Anat 192(4): 227-231.
    Bonfield, W. and C. Li (1968). "The temperature dependence of the deformation of bone." Journal of biomechanics 1(4): 323-329.
    Bordin, S., T. F. Flemmig and S. Verardi (2009). "Role of fibroblast populations in peri-implantitis." Int J Oral Maxillofac Implants 24(2): 197-204.
    Bowkett, A., D. Laverty, A. Patel and L. Addy (2016). "Removal techniques for failed implants." Br Dent J 220(3): 109-114.
    Branemark, P. I. (1959). "Vital microscopy of bone marrow in rabbit." Scand J Clin Lab Invest 11 Supp 38: 1-82.
    Branemark, P. I. (1983). "Osseointegration and its experimental background." J Prosthet Dent 50(3): 399-410.
    Buser, D., T. Nydegger, H. P. Hirt, D. L. Cochran and L. P. Nolte (1998). "Removal torque values of titanium implants in the maxilla of miniature pigs." Int J Oral Maxillofac Implants 13(5): 611-619.
    Buser, D., R. Schenk, S. Steinemann, J. Fiorellini, C. Fox and H. Stich (1991). "Influence of surface characteristics on bone integration of titanium implants. A histomorphometric study in miniature pigs." Journal of biomedical materials research 25(7): 889-902.
    Calvo-Guirado, J. L., J. Delgado-Pena, J. E. Mate-Sanchez, J. Mareque Bueno, R. A. Delgado-Ruiz and G. E. Romanos (2015). "Novel hybrid drilling protocol: evaluation for the implant healing--thermal changes, crestal bone loss, and bone-to-implant contact." Clin Oral Implants Res 26(7): 753-760.
    Cehreli, M. C., D. Karasoy, K. Akca and S. E. Eckert (2009). "Meta-analysis of methods used to assess implant stability." Int J Oral Maxillofac Implants 24(6): 1015-1032.
    Chrcanovic, B. R., T. Albrektsson and A. Wennerberg (2014). "Reasons for failures of oral implants." J Oral Rehabil 41(6): 443-476.
    Collins, D. H. (1953). "Structural changes around nails and screws in human bones." J Pathol Bacteriol 65(1): 109-121.
    Courant, R. (1994). "Variational methods for the solution of problems of equilibrium and vibrations." Lecture Notes in Pure and Applied Mathematics: 1-1.
    Cunliffe, J. and C. Barclay (2011). "Removal of a dental implant: An unusual case report." Journal of Dental Implants 1(1): 22.
    Dolan, E. B., M. G. Haugh, D. Tallon, C. Casey and L. M. McNamara (2012). "Heat-shock-induced cellular responses to temperature elevations occurring during orthopaedic cutting." J R Soc Interface 9(77): 3503-3513.
    Dolan, E. B., M. G. Haugh, M. C. Voisin, D. Tallon and L. M. McNamara (2015). "Thermally induced osteocyte damage initiates a remodelling signaling cascade." PLoS One 10(3): e0119652.
    Eriksson, A., T. Albrektsson, B. Grane and D. McQueen (1982). "Thermal injury to bone. A vital-microscopic description of heat effects." Int J Oral Surg 11(2): 115-121.
    Eriksson, A. R. and T. Albrektsson (1983). "Temperature threshold levels for heat-induced bone tissue injury: a vital-microscopic study in the rabbit." J Prosthet Dent 50(1): 101-107.
    Eriksson, A. R., T. Albrektsson and B. Albrektsson (1984). "Heat caused by drilling cortical bone. Temperature measured in vivo in patients and animals." Acta Orthop Scand 55(6): 629-631.
    Eriksson, R. A. and T. Albrektsson (1984). "The effect of heat on bone regeneration: an experimental study in the rabbit using the bone growth chamber." J Oral Maxillofac Surg 42(11): 705-711.
    Eriksson, R. A., T. Albrektsson and B. Magnusson (1984). "Assessment of bone viability after heat trauma. A histological, histochemical and vital microscopic study in the rabbit." Scand J Plast Reconstr Surg 18(3): 261-268.
    Freilich, M., B. Wen, D. Shafer, P. Schleier, M. Dard, D. Pendrys, D. Ortiz and L. Kuhn (2012). "Implant-guided vertical bone growth in the mini-pig." Clin Oral Implants Res 23(6): 751-757.
    Harder, S., S. Wolfart, C. Mehl and M. Kern (2009). "Performance of ultrasonic devices for bone surgery and associated intraosseous temperature development." Int J Oral Maxillofac Implants 24(3): 484-490.
    Hrennikoff, A. (1941). "Solution of problems of elasticity by the framework method." Journal of applied mechanics 8(4): 169-175.
    Ide, Y., T. Nakahara, M. Nasu, S. Matsunaga, T. Iwanaga, N. Tominaga and Y. Tamaki (2013). "Postnatal mandibular cheek tooth development in the miniature pig based on two-dimensional and three-dimensional X-ray analyses." Anat Rec (Hoboken) 296(8): 1247-1254.
    Isidor, F. (1996). "Loss of osseointegration caused by occlusal load of oral implants. A clinical and radiographic study in monkeys." Clin Oral Implants Res 7(2): 143-152.
    Kerr, W. J. (1980). "The effect of the premature loss of deciduous canines and molars on the eruption of their successors." Eur J Orthod 2(2): 123-128.
    Kim, Y. K., J. Y. Park, S. G. Kim and H. J. Lee (2010). "Prognosis of the implants replaced after removal of failed dental implants." Oral Surg Oral Med Oral Pathol Oral Radiol Endod 110(3): 281-286.
    Lavelle, C. and D. Wedgwood (1980). "Effect of internal irrigation on frictional heat generated from bone drilling." J Oral Surg 38(7): 499-503.
    Le Guehennec, L., A. Soueidan, P. Layrolle and Y. Amouriq (2007). "Surface treatments of titanium dental implants for rapid osseointegration." Dent Mater 23(7): 844-854.
    Leucht, P., K. Lam, J.-B. Kim, M. A. Mackanos, D. M. Simanovskii, M. T. Longaker, C. H. Contag, H. A. Schwettman and J. A. Helms (2007). "Accelerated bone repair after plasma laser corticotomies." Annals of surgery 246(1): 140-150.
    Liu, Y. F., J. L. Wu, J. X. Zhang, W. Peng and W. Q. Liao (2016). "Numerical and Experimental Analyses on the Temperature Distribution in the Dental Implant Preparation Area when Using a Surgical Guide." J Prosthodont.
    Massei, G. and S. Szmukler-Moncler (2004). "Thermo-explantation. A novel approach to remove osseointegrated implants." European Cells and Materials 7(Suppl 2): 48.
    Matthews, L. S. and C. Hirsch (1972). "Temperatures measured in human cortical bone when drilling." J Bone Joint Surg Am 54(2): 297-308.
    Mauch, M., J. D. Currey and A. J. Sedman (1992). "Creep fracture in bones with different stiffnesses." Journal of biomechanics 25(1): 11-16.
    Mohlhenrich, S. C., M. Abouridouane, N. Heussen, F. Holzle, F. Klocke and A. Modabber (2016). "Thermal evaluation by infrared measurement of implant site preparation between single and gradual drilling in artificial bone blocks of different densities." Int J Oral Maxillofac Surg 45(11): 1478-1484.
    Moss, R. W. (1964). "HISTOPATHOLOGIC REACTION OF BONE TO SURGICAL CUTTING." Oral Surg Oral Med Oral Pathol 17: 405-414.
    Nkenke, E., M. Fenner, E. G. Vairaktaris, F. W. Neukam and M. Radespiel-Troger (2005). "Immediate versus delayed loading of dental implants in the maxillae of minipigs. Part II: histomorphometric analysis." Int J Oral Maxillofac Implants 20(4): 540-546.
    Pearce, A., R. Richards, S. Milz, E. Schneider and S. Pearce (2007). "Animal models for implant biomaterial research in bone: a review." Eur Cell Mater 13(1): 1-10.
    Pogrel, M. A., J. A. Regezi, B. Fong, Z. Hakim-Faal, M. Rohrer, C. Tran and T. Schiff (2002). "Effects of liquid nitrogen cryotherapy and bone grafting on artificial bone defects in minipigs: a preliminary study." Int J Oral Maxillofac Surg 31(3): 296-302.
    Posen, S., F. C. Neale and J. S. Clubb (1965). "HEAT INACTIVATION IN THE STUDY OF HUMAN ALKALINE PHOSPHATASES." Ann Intern Med 62: 1234-1243.
    Rabbani Arshad, S., I. Zoljanahi Oskui and A. Hashemi (2016). "Thermal Analysis of Dental Implants in Mandibular Premolar Region: 3D FEM Study." J Prosthodont.
    Rashad, A., A. Kaiser, N. Prochnow, I. Schmitz, E. Hoffmann and P. Maurer (2011). "Heat production during different ultrasonic and conventional osteotomy preparations for dental implants." Clin Oral Implants Res 22(12): 1361-1365.
    Rhinelander, F. W., C. L. Nelson, R. D. Stewart and C. L. Stewart (1979). "Experimental reaming of the proximal femur and acrylic cement implantation: vascular and histologic effects." Clin Orthop Relat Res(141): 74-89.
    Rimnac, C., A. Petko, T. Santner and T. Wright (1993). "The effect of temperature, stress and microstructure on the creep of compact bovine bone." Journal of biomechanics 26(3): 219223-221228.
    Roberts, W. E., R. K. Smith, Y. Zilberman, P. G. Mozsary and R. S. Smith (1984). "Osseous adaptation to continuous loading of rigid endosseous implants." Am J Orthod 86(2): 95-111.
    Ronnerman, A. (1977). "The effect of early loss of primary molars on tooth eruption and space conditions. A longitudinal study." Acta Odontol Scand 35(5): 229-239.
    Ruehe, B., S. Niehues, S. Heberer and K. Nelson (2009). "Miniature pigs as an animal model for implant research: bone regeneration in critical-size defects." Oral Surg Oral Med Oral Pathol Oral Radiol Endod 108(5): 699-706.
    Schwartz-Dabney, C. L. and P. C. Dechow (2003). "Variations in cortical material properties throughout the human dentate mandible." Am J Phys Anthropol 120(3): 252-277.
    Stadlinger, B., E. Pilling, M. Huhle, R. Mai, S. Bierbaum, D. Scharnweber, E. Kuhlisch, R. Loukota and U. Eckelt (2008). "Evaluation of osseointegration of dental implants coated with collagen, chondroitin sulphate and BMP-4: an animal study." Int J Oral Maxillofac Surg 37(1): 54-59.
    Stajcic, Z., L. J. Stojcev Stajcic, M. Kalanovic, A. Dinic, N. Divekar and M. Rodic (2016). "Removal of dental implants: review of five different techniques." Int J Oral Maxillofac Surg 45(5): 641-648.
    Stembirek, J., M. Kyllar, I. Putnova, L. Stehlik and M. Buchtova (2012). "The pig as an experimental model for clinical craniofacial research." Lab Anim 46(4): 269-279.
    Strbac, G. D., E. Unger, R. Donner, M. Bijak, G. Watzek and W. Zechner (2014). "Thermal effects of a combined irrigation method during implant site drilling. A standardized in vitro study using a bovine rib model." Clin Oral Implants Res 25(6): 665-674.
    Swindle, M. M., A. C. Smith and B. J. Hepburn (1988). "Swine as models in experimental surgery." Journal of Investigative Surgery 1(1): 65-79.
    Wang, S., Y. Liu, D. Fang and S. Shi (2007). "The miniature pig: a useful large animal model for dental and orofacial research." Oral Dis 13(6): 530-537.
    Wennerberg, A. and T. Albrektsson (2011). "Current challenges in successful rehabilitation with oral implants." J Oral Rehabil 38(4): 286-294.

    無法下載圖示 校內:2022-07-07公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE