簡易檢索 / 詳目顯示

研究生: 卓宥任
Cho, Yu-Jen
論文名稱: 合成含兩性離子及亞磷酸官能基之共聚物修飾鈦金屬表面及其表面特性與血液相容性之研究
Zwitterionic and phosphonic acid-containing copolymers for surface modification of titanium : Synthesis, Characterization, and Hemocompatibility
指導教授: 林睿哲
Lin, Jui-Che
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 91
中文關鍵詞: 鈦金屬亞磷酸硫代甜菜鹼自由基共聚合血液相容性
外文關鍵詞: Titanium, Phosphonic acid, Sulfobetaine, Copolymerization, Hemocompatibility
相關次數: 點閱:80下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 為改善鈦及其合金之醫療器材在血液相容性及抗生物聚集(anti-biofouling) 能力不佳的問題。本研究主要是希望能夠發展新型表面改植的技術來改善其血液相容性的問題,在研究中我們合成一雙功能性共聚高分子,該高分子同時具備有可穩固鍵結於鈦基材表面以及提供鈦基材表面良好血液相容性的能力。在單體的選擇上,選擇含有亞磷酸官能基的6-acryloyloxy hexyl phosphonic acid (AcrHPA) 以及帶雙電性官能基之sulfobetaine methacrylate (SBMA)。將兩單體透過傳統自由基聚合的方式合成雙功能性共聚高分子,該共聚高分子主要透過側鏈上亞磷酸官能基鍵結於鈦基材表面,藉由雙電性硫代甜菜鹼官能基則提供該高分子良好的生物惰性,將進而達到預期之修飾效果。
    在研究中藉用NMR、GPC、TGA對共聚物進行組成以及基本性質之鑑定,爾後將製備好之共聚高分子以旋轉塗布的方式塗佈於鈦基材上加熱進行表面鍵結反應,接著利用表面接觸角 (contact angle)、原子力顯微鏡(atomic force microscopy)、電子能譜儀 (x-ray photoelectron spectroscopy)以及血小板吸附實驗 (in vitro platelets adhesion)探討其改質層表面之親疏水性、表面粗糙度、膜厚、表面元素組成以及血液相容性。
    綜合各實驗分析可知6-acryloyloxy hexyl phosphonic acid 以及sulfobetaine methacrylate 兩單體可透過傳統自由基聚合的方式產生共聚合物,且可透過Kelen-Tudös method 可得兩單體之競聚率分別為rAcrHPA = 0.726 rSBMA= 0.826,由兩單體之競聚率可推測該共聚高分子主要是以隨機排列的方式存在。將完成鍵結之改植層經多次清洗後,由表面接觸角以及電子能譜儀之結果可得知共聚高分子已成功透過化學鍵結的方鍵結於鈦基材表面,且各改植層之表面親疏水性以及表面粗糙度隨著各共聚高分子之組成有所變化。經由血小板吸附實驗我們可以發現當進料比AcrHPA以及SBMA 3:7 時該改質層表面有最佳的血液相容性。

    Despite of its widely commercial applications in biomedical area, the titanium-based material still face the challenges of hemocompatibility and anti-biofouling. The objective of this investigation was to develop a novel surface modification strategy for titanium-based material to improve thromboresistance for surfaces in rigorous blood-contacting cardiovascular applications. In this work, a novel multi-functional copolymer, which composed of both 6-acryloyloxy hexyl phosphonic acid (AcrHPA) and sulfobetaine methacrylate (SBMA) units will be synthesized by traditional free radical copolymerization. Various copolymers bearing phosphonic acid groups, which are able to bind to titanium surfaces, and zwitterionic groups, that can inhibit plasma protein adsorption, blood platelet adhesion and activation, and thrombus formation in vitro, were synthesized. These copolymers should be able to bind to titanium by means of the phosphonic acid groups to form a stable blood-inert surface.
    The properties of these copolymers were characterized with nuclear magnetic resonance spectroscopy (NMR), gel permeation chromatography (GPC) and thermogravimetric analyzer (TGA). The copolymer was then spin-coated onto the titanium substrate and heated for the formation of a covalent-bound surface layer. The surface hydrophilicity, morphology and chemical characteristics of these layers were examined by contact angle measurements (CA), atomic force microscopy (AFM), and x-ray photoelectron spectroscopy (XPS). Furthermore, the hemocompatibility of polymer films was characterized through in vitro platelets adhesion testing.
    Various novel copolymers possessing zwitterionic group and being able to bind to titanium surface were synthesized successfully. By determination of the copolymerization parameters (rAcrHPA = 0.726 and rSBMA= 0.826) with Kelen-Tudös method, the copolymerization reaction is like an ideal statistical reaction with a slight tendency for adding the monomers in a random order. CA and XPS measurement indicated a covalent bound layer of AcrHPA-SBMA copolymer was formed. In addition, the surface characteristics of the titanium-bound copolymer were affected by the composition of the monomers used. Through platelets adhesion experiment in vitro, we have noted that the copolymer prepared by the monomer feeding ratio of AcrHPA : SBMA= 3:7 showed the highest hemocompatibility among all samples examined. This work provided a practical method to create a stable blood-inert surface on titanium-based material by simply grafting a copolymer with both zwitterionic and phosphonic acid functionalities.

    目錄 摘要 I Abstract III 致謝 V 圖目錄 VIII 表目錄 XII 第一章 前言 1 第二章 文獻回顧 3 2-1 鈦金屬與其合金在生醫材料上的應用 3 2-1-1硬組織的取代 (hard tissue replacements) 3 2-1-2骨接合固定裝置 (Osteosynthesis devices) 4 2-1-3心臟與心血管的應用(Cardiac and cardiovascular applications) 5 2-2 鈦金屬與其合金應用在醫療器材使用上的問題 7 2-2-1表面具有骨相容性的第一類鈦金屬的應用 7 2-2-2表面具有生物惰性的第二類鈦金屬的應用 8 2-3 鈦金屬與其合金的表面改質方法 9 2-3-1鈦金屬生物惰性(anti-biofouling)表面改質法 10 2-4 硫代甜菜鹼類雙電性高分子 14 2-5 Silane與phosphonate (phosphonic acid and its ester)在鈦金屬或合金表面改質應用的比較 16 2-6 影響phosphonate group與金屬氧化物表面鍵結之因素 19 2-7 高分子表面改質方法 24 2-8 研究目的與動機 27 第三章 實驗方法 29 3-1 藥品與儀器清單 29 3-1-1合成6-Acryloyloxy Hexyl Phosphonic Acid (6-AcrHPA) 29 3-1-2 AcrHPA與SBMA之共聚合 29 3-1-3表面改質 30 3-1-4血液相容性實驗 30 3-1-5分析儀器 30 3-2 流程圖 32 3-3 含亞磷酸單體合成步驟 (Synthesis process of phosphonic acid-containing monomer) 33 3-3-1反應流程 33 3-3-2合成6-Bromo Hexyl Acetate (6-BHAc) 35 3-3-3合成Diethyl-6-Acetoxy Hexyl Phosphonate (6-AcHP) 35 3-3-4合成Diethyl-6-Hydroxy Hexyl Phosphonate (6-HHP) 35 3-3-5合成Diethyl-6-Acryloyloxy Hexyl Phosphonate (6-AcrHP) 36 3-3-6合成6-Acryloyloxy Hexyl Phosphonic Acid (6-AcrHPA) 36 3-4 AcrHPA與SBMA之共聚合 (Copolymerization of AcrHPA and SBMA) 37 3-5 聚合物之分子量分佈檢驗 (GPC analysis) 38 3-6 聚合物之熱裂解溫度測試 (TGA analysis) 38 3-7 鈦基材準備 (Preparation of titanium substrates) 38 3-8 表面旋轉塗佈處理 (Surface modification by spin coating ) 39 3-9 靜態接觸角之量測 (Static water contact angle measurement) 39 3-11X-ray photoelectron spectroscopy (XPS) 40 3-12血小板吸附實驗 (In vitro platelet adhesion) 40 第四章 結果與討論 43 4-1 結構鑑定 43 4-1-2 Diethyl-6-Acetoxy Hexyl Phosphonate (6-AcHP) 45 4-1-3 Diethyl-6-Hydroxy Hexyl Phosphonate (6-HHP) 46 4-1-4 Diethyl-6-Acryloyloxy Hexyl Phosphonate (6-AcrHP) 48 4-1-5 6-Acryloyloxy Hexyl Phosphonic Acid (6-AcrHPA) 50 4-1-6 AcrHPA homopolymer (Homo AcrHPA) 52 4-1-7 SBMA homopolymer (Homo SBMA) 52 4-2 各比例共聚物之NMR比較 55 4-3 GPC (Gel permeation chromatography) 58 4-4 TGA (Thermogravimetry Analysis) 60 4-5 Static water contact angle measurement (CA) 62 4-6 Atomic force microscopy(AFM) 65 4-7 XPS (X-ray photoelectron spectroscopy) 68 第五章 結論 81 參考文獻 83 圖目錄 圖2-1 椎骨支撐器 4 圖2-2 人工膝關節 4 圖2-3 人工牙根 4 圖2-4 骨板骨釘 5 圖2-5 人工心臟瓣膜 6 圖2-6 血管支架 6 圖2-7 心室輔助裝置 6 圖2-8 改質鈦金屬表面示意圖 11 圖2-9 改質鈦金屬表面示意圖 12 圖2-10 含雙電性官能基錨定分子 13 圖2-11 siloxane與phosphonic aicd/phosphonate在鈦金屬表面形成單分子膜的機制 17 圖2-12 鈦金屬表面氧化結構示意圖 19 圖2-13 phosphorate group與金屬氧化物表面錨定機制示意圖 20 圖2-14 pH值對phosphonate group於金屬氧化物表面吸附量之影響 21 圖2-15 phosphonate group與金屬氧化物表面錨定機制示意圖 21 圖2-16 左:PPA, PPS, PPE之IR圖譜。右:PPA, PPS, PPE於常溫下接枝於金屬氧化物表面之IR圖譜。 22 圖2-17 PPA, PPS, PPE於常溫下接枝於金屬氧化物表面之P-NMR圖譜。 22 圖2-18 Phosphonates於金屬氧化物表面接枝結構示意圖 22 圖2-19 上:PPA改質層於120˚C熱處理後之P-NMR圖 22 下:PPA改質層於100 C熱處理後之P-NMR圖 22 圖2-20 高分子物理性吸附示意圖 24 圖2-21 高分子grafting-to technique示意圖 25 圖2-22 高分子grafting-from technique示意圖 25 圖3-1 實驗流程表 32 圖3-2 單體合成策略 33 圖3-3 Michaelis-Arbuzov rearrangement 35 圖3-4 AcrHPA與SBMA共聚合步驟示意圖 37 圖4-1 6-BUAc 1H-NMR圖譜 43 圖4-2 6-AcHP 1H-NMR圖譜 45 圖4-3 6-HHP 1H-NMR圖譜 46 圖4-4 6-AcrHP 1H-NMR圖譜 47 圖4-5 6-AcrHPA 1H-NMR圖譜 49 圖4-6 Homo AcrHPA之1H-NMR圖譜 51 圖4-7 Homo SBMA之1H-NMR圖譜 52 圖4-8各共聚比例polymer之1H-NMR圖譜 55 圖4-9 Derivation of monomer reactivity ratio through Kelen-Tudös method. 56 圖4-10 以Kelen-Tudös method繪製圖 56 圖4-11 Homo AcrUPA以及各比例共聚物之GPC滯留時間(retention time) 57 圖4-12 各比例共聚物之TGA熱裂解溫度 59 圖4-13 Intermolecular and intramolecular anhydrise formation in the thermal degradation of poly(vinyl phosphonic acid) 59 圖4-14 Static water contact angle measurement (1000 rpm) 62 圖4-15 Static water contact angle measurement (2000 rpm) 62 圖4-16 各共聚高分子SBMA含量對其改植表面RMS作圖 64 圖4-17 1000 rpm各共聚高分子之表面AFM圖 65 圖4-18 不同轉速AFM斷面圖 65 圖4-19 Ti 2p spectra 71 圖4-20 C 1s spectra 72 圖4-21 N 1s spectra 73 圖4-22 S 2p spectra 74 圖4-23 P 2p spectra 75 圖4-24 進行血小板實驗前鈦基材以及各改植層的表面SEM 1000倍率圖 77 圖4-25 血小板實驗後鈦基材及各改植層的表面SEM 1000倍率圖 77 圖4-26 各表面血小板吸附個數 (n=8) 78 圖4-27血小板實驗後鈦基材及各改植層的表面SEM 3000倍率圖 78 表目錄 表2 1鈦金屬與其合金的表面改質方法 9 表3-1 AcrHPA與SBMA共聚合之進料組成 38 表3-2 Hepes-Tryodes緩衝溶液(1 L)之化學組成 42 表3-3 Hepes溶液(200 mL)之化學組成 42 表4-1各共聚高分子之成分組成 56 表4-2 Homo AcrHPA和copolymer之GPC分析結果 58 表4-3 各樣品表面之元素組成百分比 72

    參考文獻
    1. Castner, D. G.; Ratner, B. D., Biomedical surface science: Foundations to frontiers. Surf Sci 2002, 500, 28-60.

    2. Baier, R. E.; Meyer, A. E.; Natiella, J. R.; Natiella, R. R.; Carter, J. M., Surface-Properties Determine Bioadhesive Outcomes - Methods and Results. J Biomed Mater Res 1984, 18, 337-355.

    3. Cheng, G.; Zhang, Z.; Chen, S. F.; Bryers, J. D.; Jiang, S. Y., Inhibition of bacterial adhesion and biofilm formation on zwitterionic surfaces. Biomaterials 2007, 28, 4192-4199.

    4. Thurston, T. E.; Andrades, P.; Phillips, R. A.; Ray, P. D.; Grant, J. H., Safety Profile of Wire Osteosynthesis in Craniosynostosis Surgery. J Craniofac Surg 2009, 20, 1154-1158.

    5. Moe, K. S.; Weisman, R. A., Resorbable fixation in facial plastic and head and neck reconstructive surgery: An initial report on polylactic acid implants. Laryngoscope 2001, 111, 1697-1701.

    6. Klos, K.; Sauer, S.; Hoffmeier, K.; Gras, F.; Frober, R.; Hofmann, G. O.; Muckley, T., Biomechanical Evaluation of Plate Osteosynthesis of Distal Fibula Fractures with Biodegradable Devices. Foot Ankle Int 2009, 30, 243-251.

    7. Ye, S. H.; Johnson, C. A.; Woolley, J. R.; Snyder, T. A.; Gamble, L. J.; Wagner, W. R., Covalent surface modification of a titanium alloy with a phosphorylcholine-containing copolymer for reduced thrombogenicity in cardiovascular devices. J Biomed Mater Res A 2009, 91A, 18-28.

    8. Ye, S. H.; Johnson, C. A.; Woolley, J. R.; Murata, H.; Gamble, L. J.; Ishihara, K.; Wagner, W. R., Simple surface modification of a titanium alloy with silanated zwitterionic phosphorylcholine or sulfobetaine modifiers to reduce thrombogenicity. Colloid Surface B 2010, 79, 357-364.

    9. Holmlin, R. E.; Chen, X. X.; Chapman, R. G.; Takayama, S.; Whitesides, G. M., Zwitterionic SAMs that resist nonspecific adsorption of protein from aqueous buffer. Langmuir 2001, 17, 2841-2850.

    10. Liu, X. Y.; Chu, P. K.; Ding, C. X., Surface modification of titanium, titanium alloys, and related materials for biomedical applications. Mat Sci Eng R 2004, 47, 49-121.

    11. Viornery, C.; Guenther, H. L.; Aronsson, B. O.; Pechy, P.; Descouts, P.; Gratzel, M., Osteoblast culture on polished titanium disks modified with phosphonic acids. J Biomed Mater Res 2002, 62, 149-155.

    12. Branemark, P. I.; Hansson, B. O.; Adell, R.; Breine, U.; Lindstrom, J.; Hallen, O.; Ohman, A., Osseo-Integrated Implants in Treatment of Edentulous Jaw - Experience from a 10-Year Period. Scand J Plast Recons 1977, 7-132.

    13. Ehrenfest, D. M. D.; Coelho, P. G.; Kang, B. S.; Sul, Y. T.; Albrektsson, T., Classification of osseointegrated implant surfaces: materials, chemistry and topography. Trends Biotechnol 2010, 28, 198-206.

    14. Klos, K.; Sauer, S.; Hoffmeier, K.; Gras, F.; Frober, R.; Hofmann, G. O.; Muckley, T., Biomechanical Evaluation of Plate Osteosynthesis of Distal Fibula Fractures with Biodegradable Devices. Foot Ankle Int. 2009, 30, 243-251.

    15. Ries, M. W.; Kampmann, C.; Rupprecht, H. J.; Hintereder, G.; Hafner, G.; Meyer, J., Nickel release after implantation of the amplatzer occluder. Am Heart J 2003, 145, 737-741.

    16. Huang, H. H.; Chiu, Y. H.; Lee, T. H.; Wu, S. C.; Yang, H. W.; Su, K. H.; Hsu, C. C., Ion release from NiTi orthodontic wires in artificial saliva with various acidities. Biomaterials 2003, 24, 3585-3592.

    17. Courtney, J. M.; Lamba, N. M. K.; Sundaram, S.; Forbes, C. D., Biomaterials for Blood-Contacting Applications. Biomaterials 1994, 15, 737-744.

    18. Bolz, A.; Schaldach, M., Artificial-Heart Valves - Improved Blood Compatibility by Pecvd a-Sic-H Coating. Artif Organs 1990, 14, 260-269.

    19. Dion, I.; Baquey, C.; Havlik, P.; Monties, J. R., A New Model to Test Platelet-Adhesion under Dynamic Conditions - Application to the Evaluation of a Titanium Nitride Coating. Int J Artif Organs 1993, 16, 545-550.

    20. Dion, I.; Rouais, F.; Trut, L.; Baquey, C.; Monties, J. R.; Havlik, P., Tin Coating - Surface Characterization and Hemocompatibility. Biomaterials 1993, 14, 169-176.

    21. Jones, M. I.; McColl, I. R.; Grant, D. M.; Parker, K. G.; Parker, T. L., Protein adsorption and platelet attachment and activation, on TiN, TiC, and DLC coatings on titanium for cardiovascular applications. J Biomed Mater Res 2000, 52, 413-421.

    22. Wang, X. H.; Zhang, F.; Li, C. R.; Yu, L. J.; Zheng, Z. H.; Liu, X. H.; Chen, L. Z.; Wang, H. M.; Chen, A., In vivo and in vitro investigation of titanium oxide layers coated on LTI-carbon by IBED. J Mater Sci 2001, 36, 2067-2072.

    23. Yuhta, T.; Kikuta, Y.; Mitamura, Y.; Nakagane, K.; Murabayashi, S.; Nishimura, I., Blood Compatibility of Sputter-Deposited Alumina Films. J Biomed Mater Res 1994, 28, 217-224.

    24. Chen, J. L.; Chen, C.; Chen, Z. Y.; Chen, J. Y.; Li, Q. L.; Huang, N., Collagen/heparin coating on titanium surface improves the biocompatibility of titanium applied as a blood-contacting biomaterial. J Biomed Mater Res A 2010, 95A, 341-349.

    25. Tebbe, D.; Thull, R.; Gbureck, U., Influence of spacer length on heparin coupling efficiency and fibrinogen adsorption of modified titanium surfaces. Biomed Eng Online 2007, 6.

    26. Huang, N. P.; Csucs, G.; Emoto, K.; Nagasaki, Y.; Kataoka, K.; Textor, M.; Spencer, N. D., Covalent attachment of novel poly(ethylene glycol)-poly(DL-lactic acid) copolymeric micelles to TiO2 surfaces. Langmuir 2002, 18, 252-258.

    27. Maddikeri, R. R.; Tosatti, S.; Schuler, M.; Chessari, S.; Textor, M.; Richards, R. G.; Harris, L. G., Reduced medical infection related bacterial strains adhesion on bioactive RGD modified titanium surfaces: A first step toward cell selective surfaces. J Biomed Mater Res A 2008, 84A, 425-435.

    28. Ye, S. H.; Johnson, C. A., Jr.; Woolley, J. R.; Snyder, T. A.; Gamble, L. J.; Wagner, W. R., Covalent surface modification of a titanium alloy with a phosphorylcholine-containing copolymer for reduced thrombogenicity in cardiovascular devices. J Biomed Mater Res A 2009, 91, 18-28.

    29. Ye, S. H.; Johnson, C. A.; Woolley, J. R.; Oh, H. I.; Gamble, L. J.; Ishihara, K.; Wagner, W. R., Surface modification of a titanium alloy with a phospholipid polymer prepared by a plasma-induced grafting technique to improve surface thromboresistance. Colloid Surface B 2009, 74, 96-102.

    30. Chapman, R. G.; Ostuni, E.; Takayama, S.; Holmlin, R. E.; Yan, L.; Whitesides, G. M., Surveying for surfaces that resist the adsorption of proteins. J Am Chem Soc 2000, 122, 8303-8304.

    31. Konradi, R.; Pidhatika, B.; Muhlebach, A.; Textort, M., Poly-2-methyl-2-oxazoline: A peptide-like polymer for protein-repellent surfaces. Langmuir 2008, 24, 613-616.

    32. Bauer, M.; Lautenschlaeger, C.; Kempe, K.; Tauhardt, L.; Schubert, U. S.; Fischer, D., Poly(2-ethyl-2-oxazoline) as Alternative for the Stealth Polymer Poly(ethylene glycol): Comparison of in vitro Cytotoxicity and Hemocompatibility. Macromol Biosci 2012, 12, 986-998.

    33. Reisch, A.; Voegel, J. C.; Gonthier, E.; Decher, G.; Senger, B.; Schaaf, P.; Mesini, P. J., Polyelectrolyte Multilayers Capped with Polyelectrolytes Bearing Phosphorylcholine and Triethylene Glycol Groups: Parameters Influencing Antifouling Properties. Langmuir 2009, 25, 3610-3617.

    34. Harris, J. M., Introduction to biomedical and biotechnical applications of polyethylene glycol. Abstr Pap Am Chem S 1997, 213, 21-Poly.

    35. Caldwell, K. D., Modulation of biomaterial interactions with proteins and cells. Abstr Pap Am Chem S 1997, 214, 298-PMSE.

    36. Chung, Y. C.; Chiu, Y. H.; Wu, Y. W.; Tao, Y. T., Self-assembled biomimetic monolayers using phospholipid-containing disulfides. Biomaterials 2005, 26, 2313-2324.

    37. Kadoma, Y.; Nakabayashi, N.; Masuhara, E.; Yamauchi, J., Synthesis and Hemolysis Test of Polymer Containing Phosphorylcholine Groups. Kobunshi Ronbunshu 1978, 35, 423-427.

    38. Ishihara, K.; Ueda, T.; Nakabayashi, N., Preparation of Phospholipid Polymers and Their Properties as Polymer Hydrogel Membranes. Polym J 1990, 22, 355-360.

    39. Luk, Y. Y.; Kato, M.; Mrksich, M., Self-assembled monolayers of alkanethiolates presenting mannitol groups are inert to protein adsorption and cell attachment. Langmuir 2000, 16, 9604-9608.

    40. Shen, M. C.; Martinson, L.; Wagner, M. S.; Castner, D. G.; Ratner, B. D.; Horbett, T. A., PEO-like plasma polymerized tetraglyme surface interactions with leukocytes and proteins: in vitro and in vivo studies. J Biomat Sci-Polym E 2002, 13, 367-390.

    41. Zhang, Z.; Chao, T.; Chen, S. F.; Jiang, S. Y., Superlow fouling sulfobetaine and carboxybetaine polymers on glass slides. Langmuir 2006, 22, 10072-10077.

    42. Chang, Y.; Chen, S. F.; Zhang, Z.; Jiang, S. Y., Highly protein-resistant coatings from well-defined diblock copolymers containing sulfobetaines. Langmuir 2006, 22, 2222-2226.

    43. Zhang, Z.; Chen, S. F.; Chang, Y.; Jiang, S. Y., Surface grafted sulfobetaine polymers via atom transfer radical polymerization as superlow fouling coatings. J Phys Chem B 2006, 110, 10799-10804.

    44. Chang, Y.; Liao, S. C.; Higuchi, A.; Ruaan, R. C.; Chu, C. W.; Chen, W. Y., A Highly stable nonbiofouling surface with well-packed grafted zwitterionic polysulfobetaine for plasma protein repulsion. Langmuir 2008, 24, 5453-5458.

    45. Xiao, S. J.; Textor, M.; Spencer, N. D.; Sigrist, H., Covalent attachment of cell-adhesive, (Arg-Gly-Asp)-containing peptides to titanium surfaces. Langmuir 1998, 14, 5507-5516.

    46. Pegg, E. C.; Walker, G. S.; Scotchford, C. A.; Farrar, D.; Grant, D., Mono-functional aminosilanes as primers for peptide functionalization. J Biomed Mater Res A 2009, 90A, 947-958.

    47. Rezania, A.; Johnson, R.; Lefkow, A. R.; Healy, K. E., Bioactivation of metal oxide surfaces. Surface characterization and cell response. Langmuir 1999, 15, 6931-6939.

    48. Gawalt, E. S.; Avaltroni, M. J.; Danahy, M. P.; Silverman, B. M.; Hanson, E. L.; Midwood, K. S.; Schwarzbauer, J. E.; Schwartz, J., Bonding organics to Ti alloys: Facilitating human osteoblast attachment and spreading on surgical implant materials corrections (vol 19, pg 200, 2003). Langmuir 2003, 19, 7147-7147.

    49. Adden, N.; Gamble, L. J.; Castner, D. G.; Hoffmann, A.; Gross, G.; Menzel, H., Phosphonic acid monolayers for binding of bioactive molecules to titanium surfaces. Langmuir 2006, 22, 8197-8204.

    50. Gawalt, E. S.; Avaltroni, M. J.; Koch, N.; Schwartz, J., Self-assembly and bonding of alkanephosphonic acids on the native oxide surface of titanium. Langmuir 2001, 17, 5736-5738.

    51. Schwartz, J.; Avaltroni, M. J.; Danahy, M. P.; Silverman, B. M.; Hanson, E. L.; Schwarzbauer, J. E.; Midwood, K. S.; Gawalt, E. S., Cell attachment and spreading on metal implant materials. Mat Sci Eng C-Bio S 2003, 23, 395-400.

    52. Marcinko, S.; Fadeev, A. Y., Hydrolytic stability of organic monolayers supported on TiO2 and ZrO2. Langmuir 2004, 20, 2270-2273.

    53. Silverman, B. M.; Wieghaus, K. A.; Schwartz, J., Comparative properties of siloxane vs phosphonate monolayers on a key titanium alloy. Langmuir 2005, 21, 225-228.

    54. Lu, G.; Bernasek, S. L.; Schwartz, J., Oxidation of a polycrystalline titanium surface by oxygen and water. Surf Sci 2000, 458, 80-90.

    55. Zoulalian, V.; Monge, S.; Zurcher, S.; Textor, M.; Robin, J. J.; Tosatti, S., Functionalization of titanium oxide surfaces by means of poly(alkyl-phosphonates). J Phys Chem B 2006, 110, 25603-25605.

    56. Goldberg, S.; Sposito, G., A Chemical-Model of Phosphate Adsorption by Soils .1. Reference Oxide Minerals. Soil Sci Soc Am J 1984, 48, 772-778.

    57. Guerrero, G.; Mutin, P. H.; Vioux, A., Anchoring of phosphonate and phosphinate coupling molecules on titania particles. Chem Mater 2001, 13, 4367-4373.

    58. Stumm, W., The Inner-Sphere Surface Complex - a Key to Understanding Surface Reactivity. Adv Chem Ser 1995, 244, 1-32.

    59. Muljadi, D.; Posner, A. M.; Quirk, J. P., Mechanism of Phosphate Adsorption by Kaolinite Gibbsite and Pseudoboehmite .2. Location of Adsorption Sites. J Soil Sci 1966, 17, 230-&.

    60. Rajan, S. S. S., Adsorption of Divalent Phosphate on Hydrous Aluminum-Oxide. Nature 1975, 253, 434-436.

    61. Firkin, B. G.; Decrespigny, P. J. C.; Clarke, B. E.; Wiley, J.; Doyle, A. E.; Schreiber, G., A 75 Year Old Man with Sideroblastic Anemia. Aust Nz J Med 1986, 16, 249-255.

    62. Minko, S., Polymer Surfaces and Interfaces First ed.; Spinger2008.

    63. Lin, K. H.; Lin, J. C., A novel phosphonic acid-containing polymer for surface modification of titanium-based biomedical materials : synthesis, hemocompatibility and osteoinductivity evaluations. 2012.

    64. Mckenna, C. E.; Higa, M. T.; Cheung, N. H.; Mckenna, M. C., Facile Dealkylation of Phosphonic Acid Dialkyl Esters by Bromotrimethylsilane. Tetrahedron Lett 1977, 155-158.

    65. Jiang, D. D.; Yao, Q.; McKinney, M. A.; Wilkie, C. A., TGA/FTIR studies on the thermal degradation of some polymeric sulfonic and phosphonic acids and their sodium salts polymeric. Polymer Degradation and Stability 1999, 63, 423-434.

    66. Kim, S. H.; Park, Y. C.; Jung, G. H.; Cho, C. G., Characterization of Poly(styrene-b-vinylbenzylphosphonic acid) Copolymer by Titration and Thermal Analysis. Macromolecular Research 2007, 15, 587-594.

    67. Lalani, R.; Liu, L. Y., Synthesis, characterization, and electrospinning of zwitterionic poly(sulfobetaine methacrylate). Polymer 2011, 52, 5344-5354.

    68. Wang, R.; Hashimoto, K.; Fujishima, A., Light-induced amphiphilic surfaces. Nature 1997, 388, 431-432.

    69. Stevens, N.; Priest, C. I.; Sedev, R.; Ralston, J., Wettability of Photoresponsive Titanium Dioxide Surfaces. Langmuir 2003, 19, 3272-3275.

    70. Kanta, A.; Sedev, R.; Ralston, J., Thermally- and Photoinduced Changes in the Water Wettability of Low-Surface-Area Silica and Titania. Langmuir 2005, 21, 2400-2407.

    71. Park, J. H.; Aluru, N. R., Temperature-dependent wettability on a titanium dioxide surface. Molecular Simulation 2009, 35, 31-37.

    72. Jouan, P.-Y.; Peignon, M.-C.; Cardinaud, C.; Lemperiere, G., Characterisation of TiN coatings and of the TiNSi interface by X-ray photoelectron spectroscopy and Auger electron spectroscopy. Applied Surface Science 1993, 68, 595-603.

    73. Zorn, G.; Gotman, I.; Gutmanas, E. Y.; Adadi, R.; Salitra, G.; Sukenik, C. N., Surface Modification of Ti45Nb Alloy with an Alkylphosphonic Acid Self-Assembled Monolayer. Chem. Mater 2005, 17, 4218-4226.

    74. Viornery, C.; Chevolot, Y.; Le´onard, D.; Aronsson, B. r.-O.; Pe´chy, P. t.; Mathieu, H. J. r.; Descouts, P.; Gra¨ tzel, M., Surface Modification of Titanium with Phosphonic Acid To Improve Bone Bonding: Characterization by XPS and ToF-SIMS. Langmuir 2002, 18, 2582-2589.

    75. Beamson, G.; Briggs, D., Hight Resolution XPS of Organic Polymers-The Scienta ESCA300 Database. John wiley & Sons1992.

    76. Pohl, K.; Otte, J.; Thissen, P.; Giza, M.; Maxisch, M.; Schuhmacher, B.; Grundmeier, G., Adsorption and stability of self-assembled organophosphonic acid monolayers on plasma modified Zn–Mg–Al alloy surfaces. Surface and Coatings Technology 2013, 218, 99-107.

    無法下載圖示 校內:2023-12-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE