| 研究生: |
吳孟岳 Wu, Meng-Yueh |
|---|---|
| 論文名稱: |
利用電漿技術改質奈米碳纖維以製備超級電容複合材料之研究 Studies on supercapacitors of carbon nanofiber composites using plasma modification |
| 指導教授: |
陳炳宏
Chen, Bing-Hung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2012 |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 72 |
| 中文關鍵詞: | 電紡絲技術 、碳纖維 、電漿 、苯胺 |
| 外文關鍵詞: | electrospinning, carbon fiber, plasma, aniline |
| 相關次數: | 點閱:122 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以電漿技術改質由電紡絲技術所製備的碳纖維,並將所製備之碳纖維應用在超級電容電極,以達成具有高功率密度、高能量密度與長壽命的超高電容器。
首先,本研究是利用本實驗室電紡絲技術將PAN高分子溶液製作PAN不織布,分別配製3wt%、4wt%、5wt%三種不同濃度的高分子溶液。接著,以電紡絲得到PAN不織布,在SEM圖中可以觀察到在高分子濃度為4wt%時,可得到粗細分佈均勻且直徑約在100nm的PAN纖維。
接著,將濃度4wt%的高分子溶液由電紡絲得到的不織布,分別以800℃、900℃、1000℃和1400℃這四種不同溫度進行鍛燒。由SEM圖結果發現鍛燒溫度800℃、900℃、1000℃和1400℃,所得到的纖維直徑均約在100 nm上下。但其電容量以800℃最高為178.46 F/g;而鍛燒至1400℃的電容量38.2 F/g為四者中最低。由ESCA分析得知,這四種不同鍛燒溫度會影響電極表面官能基的分佈,其中,以800℃的碳纖維官能基含量最高;而1400℃最低。另一方面,由交流阻抗分析可知這四種以1400℃的內電阻最低。
另一方面,本研究利用混摻多壁碳管( MWCNT )以及AgNO3減少800℃的內電阻,改善低溫鍛燒下內電阻較高的問題,添加0.5wt%AgNO3以及0.5wt%MWCNT即可使得內電阻下降至0;而鍛燒至1400℃的碳纖維則以本實驗室電漿系統分別通入氮氣以及氧氣改質碳纖維表面,藉此可以活化纖維表面以及接枝氮官能基以及氧官能基在碳纖維表面,經過氧氣改質後,電容量從38.2 F/g提升至92.2 F/g,而經過氮氣改質後,電容量從38.2 F/g提升至105.73 F/g,由兩種不同接枝氣體顯示,以氮氣較佳。另外接枝苯胺,可使得電容量由38.2 F/g提升至178.52 F/g。
This study is based on the laboratory plasma technology modification of carbon fibers prepared by electrospinning technology, and the preparation of carbon fiber used in the super capacitor electrode in order to achieve high power density, high energy density and long life super capacitors.
First of all, producing PAN non-woven by electrospinning in three different concentrations (3wt%, 4wt%, 5wt%) of polymer solution. When polymer concentration is 4wt%, we can observe the available thickness distribution uniform and a diameter of about 100nm of PAN fibers in SEM. The second part of this experiment is to investigate the effect of temperature on the PAN non-woven.
The second part is using this concentration of 4% polymer solution have a non-woven by electrospinning. And then calcine in 800°C, 900°C, 1000°C and 1400°C, the four different temperature. We can observed the diameter of fiber is about 100nm in the temperature of 800°C, 900°C, 1000°C and 1400°C. But the highest capacity is 178.46F/g in the temperature of 800°C. The capacity is only 38.2F/g when the fiber in calcination to 1400°C. Analyzed the four type of carbon fiber by ESCA, the data showed that these four different calcinations temperatures will affect the distribution of the electrode surface functional groups. Analyzed by the AC impedance, the data shows that the carbon fiber calcination to 1400°C has the lowest resistance. As a result, the next step we will be divided into two part, to decrease the internal resistance and to increase the surface functional groups.
The third part is incorporated multi-walled carbon nanotube (MWCNT) and AgNO3 into carbon fiber to reduce the internal resistance of 800°C, to decrease the resistance in the low-temperature calcination, and then enhance the speed of charging and discharging. Calcination to 1400°C of carbon fiber is modified by the plasma, which purge nitrogen and oxygen, to activate and the grafted nitrogen functional groups and oxygen functional groups the carbon fiber surface. After oxygen modified, the capacitance from 38.2 F/g increased to 92.2 F/g. After nitrogen modified, the capacitance from 38.2 F/g increased to 105.73 F/g. By two different gas shows that nitrogen is more effective. So further grafting aniline, making the electric capacity of 38.2 F/g to 178.52 F/g.
1. Becker, H.E., U.S. Patent 2 800 616, 1957.
2. http://www.chinesevacuum.com/ShowArticle.aspx?id=30320.
3. Cooley, U.S. Patent, 1902. NO. 692,631.
4. Formhals, A., U.S. Patent 1934. NO.1,975,504
5. Formhals, A., U.S. Patent 1939. No.2,158,416.
6. Formhals, A., U.S. Patent 1939. No.2,160,962.
7. Vonnegut B., N.R.L., Journal of Colloid and Interface Science, 1952. 7:616.
8. H.L., S., U.S. Patent 1966. 3280,229.
9. Baumgarten, P.K., Journal of Colloid and Interface Science, 1971. 36(1): p. 71-79.
10. Larrondo L., R.D.H., Jurnal of Electrostatics, 1981. 19: p. 921-932.
11. D.H, D.J.R., Journal of Electrostatics, 1995. 35: p. 151-160.
12. Srinivasan G., R.D.H., Polymer International, 1995. 36: p. 195-201.
13. Deitzel J.M., K.J., et al., Polymer, 2001. 42: p. 8163-8170.
14. R.Kessick, G.T., Applied Physics Letters, 2003. 83: p. 557-559.
15. K.Ohgo, C.Z., M.Kobayashi,T.Asakura., Polymer, 2003. 44: p. 841-846.
16. P.Gupta, G.L.W., Polymer, 2003: p. 6353-6359.
17. B.Ding, H.Y.K., C.L.Shao.J., Polymer Science, 2002. Part B 40: p. 1261-1268.
18. M.shin, G.R., M.P.Brenner., Physics of Fluids, 2001. 13: p. 2201-2220.
19. M.Bognitzki, W.C., T.Frese, A.Schaper, M.hellwig, M.Steinhart, A.Greiner, J.H.Wendorff., Advanced Materials, 2001. 13: p. 70-72.
20. G., R., Irwin Inc., Boston, Massachusetts, 1993.
21. H.D.Young, University Physics, Addison Wesley Publishing Company.New York, 1992.
22. Bard, A.J., Oxford University, Britain, 1996.
23. http://zh.wikipedia.org/wiki/%E5%9B%BA%E5%AE%9A%E5%B1%A4.
24. Hamann, C.H.H., A.; Vielstich, W. Electrochemistry Wiley-Vch: New York, 1998.
25. Mattson, J.S.J.M., H. B., Wiley-Vch: New York, 1971.
26. Lota, G., et al., Journal of Power Sources, 2010. 195(22): p. 7535-7539.
27. Nian, J.-N., 國立成功大學化學工程學系碩士論文, 2002.
28. Langmuir, Proceedings of the National Academy of Sciences of the United States of America, 1928. 14: p. 627.
29. 李孟儒, 國立東華大學電機工程研究所碩士論文, 2002. 6-22.
30. 劉有台, 國立台北科技大學有機高分子研究所碩士學位論文, 2001: p. 13.
31. 羅正忠,張鼎張, 2002: p. 221-253.
32. M., K., American Institute of Chemical Engineers Journal, 1992. 40( 11): p. 1924.
33. H., L., Journal of the Chemical Society, 1862. 15(16).
34. J. C. Chiang, a.A.G.M., Synthetic Metals, 1986. 13: p. 193.
35. A. J. Epstein, J.M.G., and R. W. Bigelow, Synthetic Metals, 1987. 18: p. 303.
36. A. G. MacDiarmid, a.A.J.E., Synthetic Metals, 1989. 29(E409).
37. Wang, H., et al., Electrochemistry Communications, 2009. 11(6): p. 1158-1161.
38. Lin, Y.-R. and H. Teng, Carbon, 2003. 41(14): p. 2865-2871.
39. Hsieh, C.-T.T., Hsisheng, Carbon, 2002. 40(5): p. 667-674.
40. Oda, H., et al., Journal of Power Sources, 2006. 158(2): p. 1510-1516.
41. Lota, G., et al., Chemical Physics Letters, 2005. 404(1–3): p. 53-58.
42. Seredych, M., et al., Carbon, 2008. 46(11): p. 1475-1488.
43. Frackowiak, E., et al., Electrochimica Acta, 2006. 51(11): p. 2209-2214.
44. McCreery, R.L., et al., Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1994. 93(0): p. 211-219.
45. Momma, T., et al., Journal of Power Sources, 1996. 60(2): p. 249-253.
46. Kim, N.D., et al., Journal of Power Sources, 2008. 180(1): p. 671-675.
47. Shao, D., et al., The Journal of Physical Chemistry C, 2010. 114(49): p. 21524-21530.
校內:2022-12-31公開