簡易檢索 / 詳目顯示

研究生: 方志勇
Fang, Chih-Yung
論文名稱: 聚對苯二甲酸丁二酯奈米纖維電紡製程及其誘發同排聚丙烯穿晶形成能力之研究
Electrospun polybutylene terephthalate nanofibers and its effect on the transcrystallization of isotactic polypropylene
指導教授: 王紀
Wang, Chi
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 112
中文關鍵詞: 電紡絲聚對苯二甲酸丁二酯穿晶電場模擬
外文關鍵詞: electrospinning, polybutylene terephthalate, transcrystallization, electric field simulation
相關次數: 點閱:66下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究使用三氟乙酸為溶劑,以電紡法製備奈米直徑聚對苯二甲酸丁二酯(PBT)纖維,探討電紡不同黏度(ηo)溶液時,Taylor cone、液柱長度、液柱直徑(dj)及纖維直徑(df)的變化,透過液柱直徑及纖維直徑對溶液黏度做全對數圖可得scaling law關係:dj~ηo0.06與df~ηo0.73。相較於相同操作條件下電紡聚對苯二甲酸乙二酯(PET)溶液,結果顯示在相同溶液黏度,電紡PBT溶液所得液柱直徑較電紡PET溶液粗,但所得纖維直徑較細。

    以偏光顯微鏡在全偏光模式下觀察電紡聚對苯二甲酸丙二酯 (PTT)與PBT所得纖維誘發聚丙烯在纖維表面上形成穿晶之過程,並分析其穿透光強度變化,藉由穿透光強度會隨晶核增加上升的關係,可得晶核在纖維表面出現的初始溫度(Ti)。比較同為聚酯類高分子之PET、PTT及PBT纖維誘發聚丙烯在纖維表面上之成核能力,結果顯示PBT纖維誘發聚丙烯的成核能力遠優於其他兩種,成核能力的順序依次為PBT>PET>PTT。

    有限元素分析法分析球/平板電極系統之電場分布,結果顯示球電極的直徑越小,球頂表面所產生的電場強度越大。球電極頂端之電場強度 (E/Eo)對球電極直徑(d)做全對數圖可得scaling law關係;3D軸對稱:E/Eo~d-1.00,2D平面座標:E/Eo~d-0.78。將上述所得結果與圓柱/平板電極系統相比,結果顯示球/平板電極系統所得之電場強度大於圓柱/平板電極系統,但電場的衰退幅度較大。增加球電極數目為三個,發現兩側球電極的電場強度較中間球大,增加球電極間距時,中間球頂電極至平板間電場衰退幅度降低,在三圓柱/平板電極系統亦有相同趨勢。

    Electrospun polybutylene terephthalate (PBT) nanofibers were prepared from a trifluoroacetic acid (TFA)-based solvent. The effects of solution viscosity (ηo) on Taylor cone, jet length, jet diameter (dj) and fiber diameter (df) were investigated. The double-logarithmic plots of jet and fiber diameters versus the zero-shear viscosity (ηo) revealed that two scaling laws existed for the present solution, i.e., dj~ηo0.06 and df~ηo0.73. We compared the electrospinning of PBT/TFA solutions with that of PET/TFA solutions under the same conditions. It showed that under the same solution viscosity, the jet diameter of PBT/TFA solution is larger than that of PET solution. However, the diameter of electrospun PBT fibers is smaller.

    Transcrystallization of isotactic polypropylene (iPP) on as-apun PTT and PBT fibers was investigated by polarized optical microscopy. By measuring the transmitted light intensity under cross-polarized configuration, the induction temperature (Ti) for iPP transcrystallization was determined. We compared the nucleating ability of electrospun PET、PTT and PBT fibers that induced the transcrystallization of iPP. The nucleating ability of PBT fibers was much better than the others. The nucleating ability of fibers could be ranked as follows:PBT > PET > PTT.

    The electric field distribution of ball/plate electrode configuration was calculated by finite element analysis. Decreasing the diameters of ball electrode led to an increasing in the electric field at the top surface of ball electrode. The double-logarithmic plots of electric field at ball top versus the ball diameter (d) revealed that two scaling laws, i.e., 3D axisymmetric:E/Eo~d-1.00 and 2D plane:E/Eo~d-0.78. It was found that the electric field intensity of ball/plate electrode configuration was stronger than cylinder/plate electrode configuration, but the decay of electric field intensity became larger. As the numbers of ball electrode increased from one to three, the electric field intensity at both side balls were stronger than that of the middle one. As the separation of ball electrode was increased, the electric field decay between the middle ball and collecting plate became smaller. A similar tendency was found for the cylinder/plate electrode configuration.

    摘要.......................................................i Abstract..................................................ii 誌謝......................................................iv 目錄.......................................................v 表目錄...................................................vii 圖目錄..................................................viii 符號......................................................xi 一、前言...................................................1 二、簡介...................................................2 2.1電紡絲模式..........................................2 2.2電紡絲實驗觀察......................................3 2.3含纖維之複合材料....................................4 2.4電場................................................5 2.5有限元素分析法......................................6 三、文獻回顧...............................................9 3.1聚對苯二甲酸丁二酯..................................9 3.2含纖維之複合材料...................................10 3.3 電紡絲相關之電場模擬..............................13 四、實驗..................................................25 4.1實驗藥品...........................................25 4.2實驗儀器...........................................26 4.3電紡絲實驗步驟.....................................28 4.4實驗步驟...........................................29 4.5電紡纖維誘發同排聚丙烯穿晶實驗.....................35 4.6電場模擬...........................................36 五、結果與討論............................................40 5.1常溫電紡PBT/TFA溶液製程............................40 5.2探討電紡PET、PTT及PBT纖維誘發聚丙烯在纖維表面形 成穿晶能力.........................................43 5.3電場模擬...........................................46 六、結論..................................................95 七、參考文獻..............................................96 八、附錄.................................................101

    [1] 林坤賢, “以電紡絲法製備PBO纖維.”國立成功大學碩士論文 (2005).
    [2] H. Pirjo, S. Lasse, U. Jari, H. Ali, “Exploitation of electric field in controlling of nanofibre spinning process.” Polymer Engineering & Science 47, 2065 (2007).
    [3] D. W. Clegg, A. A. Collyer, ”Mechanical properties of reinforced thermoplastics”, Elsevier, London, p.2 (1986).
    [4] F. G. Krautz, “Glass fiber enhances high-temperature prepormance of thermoplastics.” Journal of Society of Plastic Engineers 27, 74 (1971).
    [5] R. H. Burton, M. J. Folkes, “Interfacial morphology in short fibre reinforced thermoplastics.” Plastic and Rubber Processing and Applications 3, 129 (1983).
    [6] H. H. Li, X. Q. Zhang, Y. X. Duan, D. J. Wang, L. Li, S. K. Yan, “Influence of crystallization temperature on the morphologies of isotactic polypropylene single-polymer composite.” Polymer 45, 8064 (2004).
    [7] C. Wang, C. R. Liu, “Transcrystallization of PTFE fiber PP composites. 1. Crystallization kinetics and morphology.” Journal of Polymer Science, Part B-Polymer Physics 34, 47 (1996).
    [8] J. Loos, T. Schimanski, J. Hofman, T. Peijs, P. J. Lemstra, “Morphological investigations of polypropylene single-fibre reinforced polypropylene model composites.” Polymer 42, 3827 (2001).
    [9] T. E. Sukhanova, F. Lednicky, J. Urban, Y. G. Baklagina, G. M. Mikhailov, V. V. Kudryavtsev, “Morphology of melt crystallized polypropylene in the presence of polyimide fibers.” Journal of Materials Science 30, 2201 (1995).
    [10] D. G. Gray, J. E. Guillet, “Open tubular columns for studies on polymer stationary phases by gas chromatography.” Journal of Polymer Science. Polymer Physics Edition 12, 231 (1974).
    [11] C. Wang, C. R. Liu, “Transcrystallization of PTFE fiber PP composites. III. Effect of fiber pulling on the crystallization kinetics.” Journal of Polymer Science, Part B-Polymer Physics 36, 289 (1998).
    [12] J. L. Thomason, A. A. Van Rooyen, “Transcrystallized interphase in thermoplastic composites. 2. Influence of interfacial stress, cooling rate, fiber properties and polymer molecular-weight.” Journal of Materials Science 27(4), 897 (1992).
    [13] Y. Q. Cai, J. Petermann, H. Wittich, “Transcrystallization in fiber-reinforced isotactic polypropylene composites in a temperature gradient.” Journal of Applied Polymer Science 65, 67 (1997).
    [14] C. Douglas, Giancoli, “Physics for scientists and engineers with modern physics.” 3rd Edition, Lavoisier, Cachan Cedex, p.559, 2000.
    [15] G. Mathew, J. P. Hong, J. M. Rhee, D. J. Leo, C. Nah, “Preparation and anisotropic mechanical behavior of highly-oriented electrospun poly(butylenes terephthalate) fibers” Journal of Applied Polymer Science 101, 2017 (2006).
    [16] M. Forouharshad, O. Saligheh, R. Arasten, R. E. Farsani, “Manufacture and characterization of poly(butylenes terephthalate) nanofibers by electrospinning” Journal of Polymer Science, Part B-Polymer Physics 49, 833 (2010).
    [17] M. Yokouchi, Y. Sakakibara, Y. Chatani, H. Tadokoro, T. Tanska, K. Yoda, “Structures of two crystalline forms of poly(butylene terephthalate) and reversible transition between them by mechanical deformation” Macromolecules 9, 266 (1976).
    [18] C. S. Park, K. J. Lee, S. W. Kim, Y. K. Lee, J. D. Nam, “Crystallinity morphology and dynamic mechanical characteristics of PBT polymer and glass fiber-reinforced composites” Journal of Applied Polymer Science 86, 478 (2002).
    [19] A. Sharples, “Introduction to polymer crystallization”, Edward Arnold, London, p15 (1966).
    [20] T. Bessel, D. Hull, J. B. Shortall, “Interface morphology and mechanical properties of unidirectional fibre reinforced nylon6.” Faraday Special Discussions of the Chemical Society 2, 137 (1972).
    [21] D. Campbell, M. M. Qayyum, “Enhanced fracture strain of polypropylene by incorporation of thermoplastic fibers.” Journal of Materials Science 12, 2427 (1977).
    [22] J. L. Thomason, A. A. Van Rooyen, “Transcrystallized interphase in thermalplastic composites. 1. Influence of fiber type and crystallization temperature.” Journal of Materials Science 27, 889 (1992).
    [23] C. Wang, C. R. Liu, “Transcrystallization of polypropylene composites: nucleating ability of fibres.” Polymer 40, 289 (1999).
    [24] C. Wang, F. H. Liu, W. H. Hung, “Electrospun-fiber induced transcrystallization of isotactic polypropylene matrix.” Polymer 52, 1326 (2011).
    [25] H. Ishida, P. Bussi, “Induction time approach to surface induced crystallization in polyethylene poly (epsilon-caprolactone) melt.” Journal of Materials Science 26, 6373 (1991).
    [26] H. Ishida, P. Bussi, “Surface induced crystallization in ultra-high modulus polyethylene fiber reinforced poly(e-caprolactone) composite,” Polymeric Preprints 31, 539 (1990).
    [27] B. Lotz, J. C. Wittmann, A. Lovinger, “Structure and morphology of poly(propylenes): a molecular analysis.” Polymer 37, 4979 (1996).
    [28] S. Brűckner, S. V. Meille, V. Petraccone, B. Pirozzi, “Polymorphism in isotactic polypropylene.” Progress in Polymer Science 16, 361 (1991).
    [29] J. Varga, “-Modification of isotactic polystyrene : preparation, structure, processing, properties, and application.” Journal of Macromolecular Science, Part B: Physics B41, 1121 (2002).
    [30] R. de P. Daubeny, C. W. Bunn, C. J. Brown, “The crystal structure of polyethylene terephthalate.” Proceedings of the Royal Society A 226, 531 (1954).
    [31] H. W. Starkweather, J. R. Paul Zoller, G. A. Jones, “The heat of fusion of poly(ethy1ene Terephthalate).” Journal of Polymer Science: Polymer Physics Edition 21, 295 (1983).
    [32] I. J. Desborough, I. H. Hall, J. Z. Neisser, “The structure of poly(trimethylene terephthalate).” Polymer 20, 545 (1979).
    [33] S. S. Jang, W. H. Jo “Phase transformation of poly (trimethylene terephthalate) in crystalline state: an atomistic modeling approach.” Fibers and Polymers 1, 19 (2000).
    [34] C. Wang, Y. W. Cheng, C. H. Hsu, H. S. Chien, S. Y. Tsou “How to manipulate the electrospinning jet with controlled properties to obtain uniform fibers with the smallest diameter?- a brief discussion of solution electrospinning process.” Journal of Polymer Research 18, 111 (2011).
    [35] I. Krucińska, A. Komisarczyk, M. Chrzanowski, E. Gliścińska, H. Wrzosek, “Electrostatic field in electrospinning with a multicapillary head – modelling and experiment.” Fibers & Textiles in Eastern Europe, 74, 38 (2009).
    [36] F. L. Zhou, R. H. Gong, I. Porat, “Needle and needleless electrospinning for nanofibers.” Journal of Applied Polymer Science 115, 2591 (2010).
    [37] 李明峰, “以電紡絲法製備聚對苯二甲酸乙二酯/石墨烯纖維及其微結構鑑定.” 國立成功大學碩士論文, (2011).
    [38] K. H. Illers, “Heat of fusion and specific volume of poly(ethylene terephthalate) and poly(butylene terephthalate).” Colloid and Polymer Science 258, 117 (1980).
    [39] Z. G. Wang, B. S. Hsiao, B. X. Fu, L. Liu, F. Yeh, B. B. Sauer, H. Chang, J. M. Schultz, “Correct determination of crystal lamellar thickness in semicrystalline poly(ethylene terephthalate) by small-angle X-ray scattering.” Polymer 41, 1791 (2000).
    [40] M. Pyda, A. Boller, J. Grebowicz, H. Chuah, B. V. Lebedev, B. Wunderlich, “Heat capacity of poly(trimethylene terephthalate).” Journal of Polymer Science, Part B: Polymer Physics 36, 2499 (1998).
    [41] 吳怡君, “不同電紡纖維對聚丙烯穿晶形成能力的影響.” 國立成功大學碩士論文, (2011).

    無法下載圖示 校內:2018-08-20公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE