| 研究生: |
李彥則 Li, Yen-Tse |
|---|---|
| 論文名稱: |
創新型二合一波浪獵能器之研究 The research of innovative two-in-one wave harvester |
| 指導教授: |
方銘川
Fang, Ming-Chung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 系統及船舶機電工程學系 Department of Systems and Naval Mechatronic Engineering |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 中文 |
| 論文頁數: | 69 |
| 中文關鍵詞: | 雙體浮體運動 、波浪發電 、相對波高 、震盪水柱 |
| 外文關鍵詞: | Point Absorber, Floating type OWC, 2D strip theory |
| 相關次數: | 點閱:92 下載:11 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要是提出一套創新型二合一波浪獵能器並探討其可行性。此系統構想是在浮動式OWC系統的上方建立一固定支架並在支架上裝設汽缸,將汽缸活塞桿連接至浮動式OWC上,藉此在遭遇波浪時不僅能擷取震盪水柱的能量,也可同時截取浮動式OWC起伏運動推動氣缸所產生的能量,此兩種截取的能量型式皆為壓縮氣體,將壓縮氣體儲存於等壓儲氣櫃,並利用等壓儲氣櫃所釋放的等壓空氣推動渦輪機以提供穩定的氣流以降低葉片轉速變化劇烈情形,降低後端控制電路成本、提高發電機輸出功率品質。此波浪獵能器之優點在於能獵取較多頻段之波浪,遭遇低頻波浪時能利用結構物之起伏運動帶動氣缸產生能量,在中高頻時也能擷取浮動式OWC所產生的能量,而且在遭遇共振頻率的波浪下,不僅能吸收因共振產生較大相對波高之能量,也能同時擷取起伏運動之能量。
本研究主要以2D截片理論為基礎,加入汽缸阻力與震盪水柱阻力探討二合一波浪獵能器遭遇波浪而產生的起伏運動與相對波高,並提出一套更加精確的發電功率算法,最後以小琉球、龍洞為放置地點為例,比較二合一波浪獵能器、浮動式與固定式震盪水柱發電功率的差異。
根據模擬結果可以得到:共振頻率會隨著雙體結構物的水線面積與體積之比值增大而增加,最大發電功率之遭遇波浪波長隨波浪方向平行之結構物氣室長度增加而增加,因此在設計時也要考慮此兩項因素之交互影響,必要時可加入隔板調整氣室長度與波長比,參考以上參數所設計之二合一波浪獵能器在共振頻率下與固定式和浮動式OWC相比能有較好的發電效率,遭遇低頻波浪時也可以克服浮動式OWC不能吸收能浪的缺點。
關鍵詞:雙體浮體運動、波浪發電、相對波高、震盪水柱、OWC。
This research is an improvement of the wave harvester. In order to improve the efficiency of wave harvester, this innovative two-in-one wave harvester was created. This new kind of wave harvester is the combination of Point Absorber and Floating type OWC wave harvester. It can absorb low and high frequency of wave energy with the principle of Point Absorber and Floating type OWC, so it can adapt more different kinds of wave. Especially encounter the nature frequency wave, this harvester can produce higher relative wave and heave motion providing higher efficiency. This research used 2D strip theory also considering air damp and piston friction resistance to stimulate this wave harvester, and also provide more precise power calculate method predicting the power generation of the real model. The stimulate results shows that two-in-one wave harvester power efficiency is higher than the Floating & Fixing type OWC when encountering the designed frequency wave. Compare to the experiment, This power generation calculate method which is better than pass method (over 100% error) is under 20% error compared to the experiment.
Key words: Point Absorber, Floating type OWC, 2D strip theory
李子宜(2007),向位轉移法應用於雙體結構物非線性力之三維分析,國立成功大學系統及船舶機電工程學系碩士論文
林繼謙(2009),岸基震盪水柱式波浪發電系統之設計, 國立成功大學系統及船舶機電工程學系碩士論文,1-137.
徐于淑(2013),浮動式雙體結構波浪發電系統之研究,國立成功大學系統及船舶機電工程學系碩士論文。
郭禮安、黃文毅、楊瑞源、尤上林、侯春富、林明宏(2008),縱移式波浪發電系統作動功率與波能關聯性先期研究. Paper presented at the Proceeding of the 30th Ocean Engineering Conference in Taiwan, National Chiao Tung University.
黃文毅(2010),台灣周邊海域波浪能源分布特性之研究. 國立台灣大學工程科學及海洋工程學研究所碩士論文.
張顥譯(2014). 以浮體帶動之螺桿式波浪發電系統之研究, 國立成功大學系統及船舶機電工程學系碩士論文.
Chaplin,J., Farley., Prentice, M., Rainey, R., Rimmer, S., & Roach, A.(2007). Development of th ANACONDA all-rubber WEC. Proc. 7th EWTEC, 2007.
Da Rosa, A. V. (2012). Fundamentals of Renewable Energy Processes. Academic press.
Duckers, L. (2004). Wave energy. Renewable Renewable Energy: Power for a Sustainable Future. Oxford University Press, Oxford.
EMEC.(2012). Wave Energy Device. Retrieved 6/24, 2014, from http://www.emec.org.uk/marine-energy/wave-devices/
Fang, M.C. (1984a), “A Study Of Hydrodynamic Interactions Of Two Ships In The Open Seas,” Stevens Inst. of Tech. PH.D. Dissertation, 1984.
Fang, M.C. (1984b), “The Motion of SWATH Ships in Waves,” Journal of Ship Research, Vol. 32, No. 4, pp. 238-245, 1988.
Fang, Ming-Chung (1985), “Relative Elevation and Pressure Distribution of a Two-Dimensional Catamaran Ship In Beam Wave,” Journal of SNAME, No.4, pp., 71-77, ROC, 1985.
Fang, Ming-Chung (1988), 12, “the Motions of SWATH SHIP in Waves”, Journal Ship Research, Vol.32, NO.4, pp. 238-245, USA.(NSC-76-0403-E006-01)(SCI,EI)
Falca˜o AF de O (2000), “The shoreline OWC wave power plant at the Azores.” In: Proceedings of 4th European Wave Energy Conference, pp. 42–7, 2000.
Hong, Y.S. (1980), “Improvement in the Prediction of Heave and Pitch Motion for SWATH Ships,” DINSRDC Development Center, Bethesda, Md., April 1980.
Heath, T., Whittaker, T., & Boake, C. (2000). The design, construction and operation of the LIMPET wave energy converter (Islay, Scotland). Paper presented at the 4th Eyropean wave energy conference, 2000.
Heath, T. (2012). A review of oscillating water columns. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering sciences, 370(1959), 235-245.
Henderson, R. (2006). Design, simulation, and testing of a novel hydraulic power take-off system for the Pelamis wave energy converter. Renewable Energy, 31(2), 271-283, 2006.
Korvin-Kroukovsky, B.V. and Jacobs,W.R. (1952), “Pitching and Heaving Motions of a Ship in Regular Waves,” SNAME Tran., Vol.65, 1952.
Kim, C.H. (1976), “Motion and Load of a Catamaran Ship of Arbitrary Shape in a Seaway,” Journal of Hydronautics, Vol. 10, No.1, pp. 8-17, Jan. 1976.
Kofoed, J.P., Frigard, P., Friis-Madsen, E., & Sørensen, H. C. (2006). Prototype testing of the wave energy converter wave dragon Renewable Energy, 31(2), 181-189. doi: 10.1016/j.renene.2005.09.05
Lee, C.M. (1977), “Prediction of Motion, Stability, and Wave Load of Small- Waterplane- Area Twin-Hull-Ships,” SNAME Trans, Vol.85, pp.94-130, 1977.
Lin, C.C., Dorrell, D.G., and Hsieh, M.F. (2008), “A Small Segmented Oscillating Water Column using a Savonius Rotor Turbine,” In: Sustainable Energy Technologies, ICSET, Singapore, 2008.
Masuda,Y. (1971), “Wave-activated generator,” Int. Colloq Exposition Oceans, France: Bordeaux, 1971.
Masuda,Y. (1979), “Experimental full-scale results of wave power machine Kaimei in 1978.” In: Proc First Symp Wave Energy Utilization, Gothenburg, Sweden, pp. 349–63, 1979.
Martins, E., Ramos, F.S., Carrilho, L., Justino, P., Gato, L., Trigo, L., Neumann, F. (2005), “CeoDouro project: overall design of an OWC in the new Oporto breakwater.” In: Proceedings of 6th European Wave Tidal Energy Conference, pp. 273–80., 2005.
McCormick, M.E. (1981), Ocean Energy conversion, In: John Wiley & Sons Publishers, New York, 1981.
Mohammad, Sameti & Elham, Farahi. (2014). “Output power for an oscillating water column wave energy convertion device”, University of Tehran, Iran.
OceanLinx 1MW OWC(2014). Available online at: http://www.oceanlinx.com/ [accessed18.5.2015].
Ocean Power Technologies. (2006). Commercialization Of PowerBuoy. Paper presented at the 25th Annual International Submerged Lands Management Conference.
Ohneda, H., Igarashi, S., Shinbo, O., Sekihar,a S., Suzuki, K., Kubota, H. (1991), et al, “Construction procedure of a wave power extracting caisson breakwater.” Tokyo: Proceedings of 3rd Symposium on Ocean Energy Utilization, pp. 171–9, 1991.
Oregon Sea Grant.(2013). A Primer on Wave Energy Wave Energy Devices: Oregon State University.
Polinder, H., Damen, M., Gardner, F., & de Sousa Prado, M.G. (2006). Modelling and test results of the Archimedes wave swing. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 220(8), 855-868. doi: 10.1243/09576509jpe284
Prado, M. (2008). Aechimedes wave swing(AWS). Ocean wave energy. Berlin: Springer, 297-304
Shaw, R. (1982), Wave Energy: A design challenge, Ellis Horwood Publishers,1982.
Stappenbelt, B. & Cooper, P., “Mechanical Model of a Floating Oscillating Water Column Wave Energy Conversion Device (2010),” 2009 Annual Bulletin of the Australian Institute of High Energetic Materials, Vol. 1, pp. 34-45, 2010.
Torre-Enciso, Y., Ortubia, I., Lo´ pez de Aguileta, L.I., Marque´ s, J. (2009). “Mutriku wave power plant: from the thinking out to the reality,” In: Proceedings 8th European Wave Tidal Energy Conference, p. 319–29, 2009.
Tran, Xuan, B., Yanada, Hideki (2013),”Dynamic Friction Behaviors of Pneumatic Cylinder”, Hanoi University of Science and Technology, Hanoi, Vietnam.
Waters, R., Stålberg, M., Danielsson, O., Svensson, O., Gustafsson, S., Strömstedt, E. Leijon, M. (2007). Experimental results from sea trials of an offshore wave energy system. Applied Physics Letters, 90(3), 034105.
Wello (2012) Wello Oy Penguin. from http://www.wello.eu/penguin.php
Whittatker, T.J.T. etals(2002),”Identification of non-linear flow charaacteristics of LIMPET shoreline OWC”, International offshore and Polar Engineering Conference, Kyushu,Japan,2002.