簡易檢索 / 詳目顯示

研究生: 陳銘達
Chen, Ming-Ta
論文名稱: 濺鍍沉積法合成氧化鋅奈米線/棒於矽基板
Sputter Deposition of ZnO nanowires/nanorods on Si
指導教授: 丁志明
Ting, Jyh-Ming
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 125
中文關鍵詞: 奈米棒無電鍍銅氧化鋅濺鍍奈米線
外文關鍵詞: electroless, ZnO, sputter, nanowire, nanorod
相關次數: 點閱:97下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   目前一維奈米材料的研究非常熱門,其中許多研究團體專注在氧化鋅奈米結構及其應用,其中奈米線合成的方法大部分利用了氣-液-固(VLS)機制的各種合成法。而根據之前的研究發現【1,2】,我們利用濺鍍系統在無電鍍銅的基板上沉積出氧化鋅奈米棒的結構,而此合成方法無法利用VLS的機制來解釋其成長過程,成長機制並不是十分明顯。本論文在討論在不同銅層析鍍下,經由射頻濺鍍氧化鋅試圖以得到氧化鋅奈米棒,進而改變濺鍍系統的參數,藉此試圖改變氧化鋅奈米棒的尺寸及性質。經過實驗結果顯示,無電鍍銅沉積速率對於成長氧化鋅奈米棒的影響非常大,以較快的沉積速率析鍍之無電鍍銅較能成長出高密度的奈米棒。之後並討論氧化鋅奈米棒的光學性質。

      Various techniques have been used to grow ZnO nanorods and a common mechanism to explain the growth of ZnO nanorods or nanowires is the vapor-liquid-solid (VLS) mechanism. Different from these processes and the VLS growth mechanism, we have reported in previous papers【1,2】, a new route for the growth of ZnO nanorods using a sputter deposition technique.It was found that the coating of an electroless copper layer on the substrate is critical for the formation of ZnO nanorods. It also appears that the VLS fails to explain the growth mechanism and the growth mechanism is still unclear. Therefore, as a part of the effort to explore the unknown growth mechanism, we have investigated the effect of various copper coatings and ZnO deposition parameters on the formation of ZnO nanorods. The formation of ZnO nanorods is discussed.

    摘要......................................................I 英文摘要.................................................II 致謝....................................................III 目錄.....................................................IV 圖目錄.................................................VIII 表目錄.................................................XIII 第一章 緒論...............................................1 第二章 文獻回顧...........................................4 2-1 氧化鋅薄膜之文獻回顧................................4 2-2 製程條件............................................8 2-3氧化鋅奈米線之研究..................................10 2-4 濺鍍理論...........................................16 2-4-1 濺鍍原理.....................................16 2-4-2 濺鍍率及影響因素.............................17 2-5 薄膜沉積的原理.....................................20 2-5-1 沉積現象.....................................20 2-5-2 薄膜表面及截面型態結構.......................22 IV 2-6 無電極電鍍.........................................24 第三章 實驗方法..........................................28 3-1 實驗流程...........................................28 3-2 基板清洗...........................................29 3-3 射頻濺鍍鈦薄膜於矽基板.............................29 3-4 熱蒸鍍銅、濺鍍銅及無電鍍銅的製備...................30 3-4-1 熱蒸鍍銅製備.................................30 3-4-2 射頻濺鍍銅製備...............................31 3-4-3 無電鍍銅製備.................................32 3-5 射頻磁控濺鍍氧化鋅.................................35 3-6 試片分析...........................................36 3-6-1 顯微分析.....................................36 3-6-2 結構分析.....................................37 3-6-3 成份分析.....................................39 3-6-4 表面分析.....................................39 3-6-5 發光特性分析.................................40 第四章 結果與討論 4-1 無電鍍銅、濺鍍銅及熱蒸鍍銅層之分析.................42 4-1-1 pH值對無電鍍銅的影響........................42 V 4-1-2 溫度及pH值對無電鍍銅的影響..................49 4-1-3 控制鍍液組成對無電鍍銅粗糙度的影響...........53 4-1-4 無電鍍銅的退火熱處理.........................55 4-1-5 無電鍍銅的氫氣蝕刻處理.......................59 4-1-6 濺鍍銅與熱蒸鍍銅之分析.......................61 4-1-7 無電鍍銅、濺鍍銅與熱蒸鍍銅的比較.............63 4-2 濺鍍銅和熱蒸鍍銅成長氧化鋅奈米棒...................66 4-3 無電鍍銅層成長氧化鋅奈米棒.........................69 4-3-1 控制無電鍍沉積速率成長氧化鋅奈米棒的結構分析.69 4-3-2 無電鍍銅鍍液pH值對成長氧化鋅奈米棒的影響 ...73 4-3-3 無電鍍銅退火後成長氧化鋅奈米棒...............78 4-3-4 無電鍍銅經過氫氣蝕刻後成長氧化鋅奈米棒.......81 4-4 氧化鋅濺鍍參數控制對氧化鋅奈米棒成長與結構的影響.. 83 4-4-1濺鍍時間對氧化鋅奈米棒結構的影響..............83 4-4-2濺鍍工作壓力對氧化鋅奈米棒結構的影響..........95 4-4-3工作距離對氧化鋅奈米棒結構的影響..............99 4-4-4 改變濺鍍角度對氧化鋅奈米棒結構的影響........102 4-4-5 射頻功率對氧化鋅奈米棒結構的影響............106 4-5 氧化鋅奈米棒成長機制的探討.......................110 VI 第五章 結論.............................................118 參考文獻................................................121

    1. Iijima, Helical microbubules of graphitic carbon, Nature, 354, 56,1991
    2. Tsung-Han Chen, Shih-Chin Chang, I-Nan Lin, Diamond & Related Materials 14
    (2005) 774– 777
    3. Z.Q. Zhang, C.B. Jiang, S.X. Li, S.X. Mao, Journal of Crystal Growth 277
    (2005) 321–329
    4. Gyu-Chul Yi, ChunruiWang and Won Il Park, Semicond. Sci. Technol. 20 (2005)
    S22–S34
    5. Microsystem Technologies 11 (2005) 416–423
    6. Guozhen Shen, Jung Hee Cho, Jin Kyoung Yoo, Gyu-Chul Yi, Cheol Jin Lee,
    Synthesis and Optical Properties of S-Doped ZnO Nanostructures: Nanonails
    and Nanowires
    7. A. Sekar, S.H. Kim, A. Umar, Y.B. Hahn, Journal of Crystal Growth
    277 (2005) 471–478
    8. Jinmin Wang, Lian Gao, Solid State Communications 132 (2004) 269–271
    9. Woong Lee, Min-Chang Jeong, Jae-Min Myoung, Acta Materialia 52 (2004) 3949–
    3957
    10. Seung Yong Bae, Hee Won Seo, and Jeunghee Park, J. Phys. Chem. B 2004,
    108, 5206-5210
    11. Jiang, Yang; Yao, Yuan; Meng, Xiangmin; Zapien, Juan Antonio; Lee, Chun
    Sing; Lifshitz, Yeshayahu; Lee, Shuit Tong, Advanced Functional Materials,
    v 14, n 6, June, 2004, p 589-594
    12. Pu Xian Gao and Zhong L. Wang, J. Phys. Chem. B 2004, 108, 7534-7537
    13. Jiansheng Jie, Guanzhong Wang, Qingtao Wang, Yiming Chen, Xinhai Han,
    Xiaoping Wang, and J. G. Hou, Journal of Physical Chemistry B, v 108,
    n32, Aug 12, 2004, p 11976-11980
    14. G.S. Wu, T. Xie, X.Y. Yuan, Y. Lia, L. Yang, Y.H. Xiao, L.D. Zhang, Solid
    State Communications 134 (2005) 485–489
    15. Vayssieres, Lionel, Advanced Materials, v 15, n 5, Mar 4, 2003, p 464-466
    16. Michael H. Hwang, Room-Temperature Ultraviolet Nanowire Nanolasers,
    Science, 292, 1897, 2001
    17. B. J. Jin, Materials Science and Engineering B, 71, 301, 2000
    18. T. Yoshida, Applied Physical Letters, 64, 3243, 1994
    19. Lauren E. Shea, The Eletrochemical Society Interface, Summer,1998
    20. Ko, Hyungduk; Tai, Weon-Pil; Kim, Ki-Chul; Kim, Sang-Hyeob; Suh, Su-Jeong;
    Kim, Young-Sung, SPEC. ISS., Mar 22, 2005, p 160-165
    21. K. Haga, M. Kamidaira, Y. Kashiwaba, T. Seki Journal of Crystal Growth, v
    277, n 1-4, Apr 15, 2005, p 352-358
    22. Kang, D.J.; Kim, J.S.; Jeong, S.W.; Roh, Y.; Jeong, S.H.; Boo, J.H.,Thin
    Solid Films, v 475, n 1-2 guchi and H. Watanabe, Journal of Crystal
    Growth,Volumes 214-215 , 2 June 2000, Pages 77-80
    23. H. Gomeza, A. Maldonado,M. de la L. Olvera, D.R. Acosta, Solar Energy
    Materials & Solar Cells 87 (2005) 107–116
    24. Akira Ohtomo, Atsushi Tsukazaki, Akira Ohtomo et al 2005 Semicond. Sci.
    Technol. 20 S1-S12
    25. Lu, Jianguo, Applied Surface Science, v 207, n 1-4, Feb 28, 2003, p 295-299
    26. Shaoqiang, Chen, Applied Surface Science, v 241, n 3-4, Mar 15, 2005, p
    384-391
    27. Minami, Tadatsugu, Thin Solid Films, v 445, n 2, Dec 15, 2003, p 268-273
    28. D. Litvinov, A. Rosenauer, and D. Gerthsen, Applied Physics Letters, v 81,
    n 4, Jul 22, 2002, p 640
    29. G. Wedler a, J. Walz a, T. Hesjedal b, E. Chilla b, R. Koch, Surface
    Science 402–404 (1998) 290–294
    30. Hadi Savaloni, Simin Bagheri Najmi, Vacuum 66 (2002) 49–58
    31. Guodong Yuan, Zhizhen Ye, Journal of Crystal Growth, v 273, n 3-4, Jan 3,
    2005, p 451-457
    32. Sakai, K.; Komaki, H.; Yoshino, K.; Sakemi, H.; Awai, K.; Yamamoto, T.;
    Ikari, T., Materials Science and Engineering B Volume 118, Issues 1-3 , 25
    April 2005, Pages 70-73
    33. Lin, Su-Shia; Huang, Jow-Lay; Lii, Ding-Fwu, Surface and Coatings
    Technology, v 176, n 2, January, 2004, p 173-181
    34. Zhu, Shen, Journal of Crystal Growth, v 211, n 1, 2000, p 106-110
    35. Y. Gu, Igor L. , M. Yin, S. O’Brien, and G. F. Neumark, APPLIED PHYSICS
    LETTERS VOLUME 85, NUMBER 17
    36. Justin C. Johnson, Haoquan Yan,, Peidong Yang, and Richard J. Saykally, J.
    Phys. Chem. B 2003, 107, 8816-8828
    37. y.w. heo, b.s. kang, l.c. tien, d.p. Norton, f. ren, j.r. la roche, s.j.
    pearton, Appl. Phys. A 80, 497–499 (2005)
    38. Xiang Liu, Xiaohua Wu, Hui Cao, and R. P. H. Chang , J. Appl. Phys., Vol.
    95, No. 6, 15 March 2004,3141-3147
    39. J F Conley Jr, L Stecker and Y Ono, Nanotechnology 16 (2005) 292–296
    40. X. S. Peng, G. W. Meng, J. Zhzng, X. F. Wang, Y. W. Wang,
    C. Z. Wang and L. D. Zhang, J. Mater. Chem., 2002, 12, 1602
    41. J. Kim, S. H. Wen, D. Y. Jung, R. W. Johnson, IBM J. RES. DEVELOP. VOL. 28
    NO. 6 NOVEMBER 1984
    42. Glenn O.Mallory, Juan B. Hajdu,” Electoless Plating: Fundamentals And
    Applications”
    43. ” 邱文鼎, 新穎氧化鋅奈米線生長技術, 國立成功大學碩士論文 2003“
    44. R.J. Honga, X. Jianga, G. Heideb, B. Szyszkaa, V. Sittingera, W. Wernera,
    Journal of Crystal Growth 249 (2003) 461–469
    45. Wei Gao and Zhengwei Li ,Ceramics International 30 (2004) 1155–1159
    46. Hyoun Woo Kim, Nam Ho Kim , Materials Science and Engineering B103 (2003)
    297–302

    下載圖示 校內:立即公開
    校外:2005-08-04公開
    QR CODE