簡易檢索 / 詳目顯示

研究生: 蕭坤元
Hsiao, Kun-Yuan
論文名稱: 脈波諧波特徵之理論驗證及其對認知刺激反應與中醫學理的一致性探討
Theoretical Validation of Pulse Wave Harmonic Features and Their Alignment with Traditional Chinese Medicine Theory in Response to Cognitive Stimulation
指導教授: 楊政達
Yang, Cheng-Ta
學位類別: 博士
Doctor
系所名稱: 醫學院 - 健康照護科學研究所
Institute of Allied Health Sciences
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 257
中文關鍵詞: 臟腑脈波諧波中醫學輕度認知障礙機器學習
外文關鍵詞: Zang-organ, Pulse Harmonics, Traditional Chinese Medicine, Mild Cognitive Impairment, Machine Learning
相關次數: 點閱:23下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著失智症挑戰日益嚴峻,傳統中醫學(Traditional Chinese Medicine, TCM)提供了一種系統性與整體性的替代框架,用於理解認知退化的過程。此一框架的核心是臟腑理論,其根源可追溯至《黃帝內經》等經典文獻,強調生理與心理功能的統一結構,並以此解釋心智活動的基礎。
    依據臟腑理論,各臟腑分別主導特定的認知功能:肝對應執行功能,脾主短期記憶(short-term memory, STM),腎則與長期記憶(long-term memory, LTM)相關。心在傳統上被認為主導選擇性注意,肺則與感覺覺察及外部刺激的初步處理有關。這樣的臟腑—認知對應關係不僅提供了一個可檢驗的模型,也在中醫與現代認知科學之間建立了概念橋樑。
    脈診自古以來即為評估臟腑功能狀態的核心方法。為提升其客觀性與可重現性,本研究引入傅立葉轉換技術,將動脈脈波分解為不同諧波成分,並以 Cn 值表示各諧波的振幅。每一諧波被假設對應於特定臟腑之功能狀態。
    基於此理論整合,本論文提出「臟腑諧波反應假說」(Zang-Organ Harmonic Response Hypothesis),主張特定的認知刺激會引發對應臟腑的生理反應,而此反應可透過脈波諧波變化加以捕捉。為驗證此假說,本研究設計了三個部分的研究流程,以探討其生理基礎與診斷應用價值。
    本論文之研究設計包括三部分:(1)系統性文獻回顧:建立脈波諧波分析的理論基礎與方法學架構;(2)脈波數據分析:比較輕度認知障礙(MCI)患者與健康對照組在認知作業前後的諧波變化,評估與臟腑功能相關的血管反應。受試者於認知減法任務前後,透過光體積描記法(photoplethysmography, PPG)進行脈波紀錄;(3)機器學習分類:建立多層感知器(MLP)模型,基於諧波特徵進行 MCI 的分類,並評估脈波分析於認知退化檢測之診斷潛力。
    研究結果顯示:(1)系統性回顧確認脈波諧波與認知功能可能相關,並指出 C1 與肝、心相關,C2 與腎相關,C3 與脾相關;(2)實驗結果顯示,健康組在認知作業後 C2(腎)與 C3(脾)均顯著下降,而 MCI 組則未見此變化;(3)基於諧波變化所建立之 MLP 模型達到 80% 的分類準確率,並確認 C2 與 C3 為關鍵鑑別特徵。
    綜合而言,本論文延伸並驗證了臟腑諧波反應假說,證明脈波諧波不僅能反映臟腑層級對認知任務的反應,也能捕捉個體在認知功能上的差異。C2 與 C3 的選擇性變化顯示腎與脾可能在早期認知退化中扮演核心角色,而分類模型進一步支持此生理模式具備診斷應用的可行性,從而在傳統理論與現代運算工具之間建立連結。

    In response to the growing challenge of dementia, Traditional Chinese Medicine (TCM) offers an alternative framework for understanding cognitive decline through a systems-based, holistic perspective. Central to this framework is the Zang-organs theory, a concept rooted in the classical texts such as Huangdi Neijing (黃帝內經), which conceptualizes a unified structure integrating physiological and psychological functions to explain the foundations of mental activity.
    According to the Zang-organs theory, each Zang-organ governs a specific aspect of cognition: the liver is associated with executive function, the spleen with short-term memory (STM), and the kidney with willpower and long-term memory (LTM). The heart is traditionally associated with selective attention, while the lung is related to sensory perception and the initial processing of external stimuli. This Zang-organ–cognition mapping provides a testable model and establishes a conceptual bridge between TCM and modern cognitive science.
    Traditionally, pulse diagnosis has been a core method for assessing the functional status of Zang-organs. To enhance objectivity and reproducibility, this study applies Fourier transform techniques to decompose arterial pulse waveforms into harmonic components. The resulting Cn values represent the amplitude of each harmonic, with each component hypothesized to reflect the functional state of a specific Zang-organ.
    Based on this theoretical integration, the present dissertation proposes the “Zang-Organ Harmonic Response Hypothesis,” which posits that specific cognitive stimulus elicits physiological responses in corresponding Zang-organs, and that such responses can be captured through changes in pulse harmonics. To empirically evaluate this hypothesis, a three-part research design was implemented to explore its physiological basis and diagnostic utility.
    To systematically investigate this issue, this dissertation comprises three parts: (1) Systematic Review – Establishes the theoretical foundation and methodological framework for pulse harmonic analysis. (2) Pulse Wave Data Analysis – Examines harmonic changes in MCI patients and healthy controls before and after cognitive tasks to assess vascular responses linked to TCM organ functions. Pulse wave signals were recorded using photoplethysmography (PPG) both before and after a subtraction task. (3) Machine Learning Classification – Develops a multilayer perceptron (MLP) model to classify MCI based on harmonic features, evaluating the diagnostic potential of pulse wave analysis for MCI detection.
    The results of this dissertation revealed that: (1) a potential association between pulse wave harmonics and cognitive function was identified through a systematic literature review, with evidence supporting the correspondence of C1 to the liver and heart, C2 to the kidney, and C3 to the spleen; (2) experimental findings showed that healthy participants exhibited significant post-task decreases in C2 (kidney) and C3 (spleen), whereas no such changes were observed in the MCI group; and (3) a MLP model based on these harmonic changes achieved 80% classification accuracy, with C2 and C3 identified as key discriminative features.
    These results extend the Zang-Organ Harmonic Response Hypothesis by demonstrating that pulse harmonics not only reflect Zang-organ-level responses to cognitive tasks but also capture individual differences in cognitive function. The selective changes in C2 and C3 suggest that kidney and spleen functions may play central roles in early cognitive decline. The classification model further implies that these physiological patterns are robust enough to support diagnostic applications, bridging traditional theories with modern computational tools.

    中文摘要 2 Abstract 4 Acknowledgments 7 Table of contents 9 List of Figures 12 List of Tables 14 Chapter 1: Introduction 16 1.1 Research Background and Motivation 16 1.2 The Zang-organ Theory in TCM 17 1.2.1 the "Five Zang-Organ-Stored Spirits" (五神藏) theory 22 1.2.2 The Comparison of Zang-organ Theory and Cognitive Process 34 1.3 Aspects of Cognitive Decline 39 1.3.1 Cognitive Decline in Psychological Perspective 40 1.3.2 Cognitive Decline in TCM Perspective 40 1.3.3 Integrating Psychological and TCM Perspectives 42 1.4 Pulse Diagnosis in TCM 44 1.5 Scientific Pulse Diagnosis: Pulse Harmonic Analysis 46 1.5.1 Zang-Organ Concepts in Pulse Harmonic Analysis 49 1.5.2 Zang-Organ Harmonics in Cognitive Decline 50 1.6 Proposed Conceptual Model and Hypothesis 51 1.7 Summary 54 Chapter 2: Dissertation Structure and Objectives 56 2.1 Introduction 56 2.2 Component Studies within the Dissertation Framework 57 2.2.1 Systemic Review of Pulse Harmonic Analysis 57 2.2.2 Pulse Harmonic Analysis for Identification of Cognitive Impairment 58 2.2.3 Constructing a Discrimination Model for MCI 60 2.3 Dissertation structure 61 Chapter 3: Systematic Review of Pulse Harmonic Analysis 63 3.1 Introduction 63 3.2 Research Purposes 64 3.3 Search Strategy 65 3.4 Screening Criteria 69 3.5 Snowball Search 70 3.6 Results 70 3.6.1 Overview of Included Studies 70 3.6.2 Key Literature Findings 80 3.7 Summary 91 3.8 Extension of Summary: Constructing Hypotheses 92 Chapter 4: Pulse Harmonic Analysis for Identification of Cognitive Impairment 98 4.1 Introduction 98 4.2 Rationale for Focusing on MCI 101 4.3 Subject Recruitment 102 4.3.1 Sample size 102 4.3.2 Participants 103 4.4 Assessment scales and measurement tools 106 4.4.1 Montreal Cognitive Assessment (MOCA) 106 4.4.2 Pulse signal recorder 108 4.4.3 Cognitive Stimulus through Subtraction Tasks 110 4.5 Experimental design 114 4.6 Analysis 117 4.6.1 Signal Processing 117 4.6.1 Statistical analysis 119 4.7 Results 120 4.7.1 Participant Characteristics 120 4.7.2 Baseline Comparison 122 4.7.3 Cognitive Stimulus Effects 123 4.8 Summary 126 4.9 Extension of Summary: Testing Hypotheses 134 Chapter 5: Constructing a Discrimination Model for MCI 137 5.1 Introduction 137 5.2 Research Purposes 143 5.3 Data Collection 143 5.4 Research Process 145 5.4.1 Data Preprocessing 145 5.4.2 Exploratory Data Analysis (EDA) 150 5.4.3 Data Splitting 151 5.4.4 Outlier Detection and Correction 153 5.4.5 Optimal Machine Learning Model Selection 153 5.4.6 The Structure of Multilayer Perceptron 157 5.4.7 Hyperparameter Tuning: Threefold Cross-Validation. 159 5.4.8 Final Model Validation: Hold-out Analysis 160 5.4.9 Feature Contribution Analysis via Permutation Importance 161 5.5 Results 163 5.5.1 Exploratory Feature Distributions (ΔC1–ΔC4) 163 5.5.2 Optimal Machine Learning Model Selection 166 5.5.3 Model Training Outcomes 168 5.5.4 Feature Contribution Analysis via Permutation Importance 180 5.6 Summary 182 Chapter 6: Discussion 185 6.1 The Objectives of the Dissertation 185 6.2 Summary of Research Findings 186 6.3 Reflection on the Theoretical Framework 189 6.3.1 Overview of the Original Hypothesis 189 6.3.2 Linking Experimental Results and Hypothesis 190 6.3.3 Revising the Theoretical Framework 197 6.3.4 Comparison with Existing Evidence 199 6.3.5 Theoretical Limitations and Boundary Conditions 203 6.3.6 Implications for Future Theory-Driven Research 206 6.4 Summary of Theoretical and Empirical Integration 208 Chapter 7: Conclusion 209 Reference 211 Appendix 224 Appendix I. The A Definition of Pulse Harmonic Analysis 224 Appendix II. Documentation of Research Ethics Committee Approval 229 Appendix III. Chinese version of the Montreal Cognitive Assessment (MOCA) 233 Appendix IV. The data sheet of Blood Volume Pulse (BVP) Finger Clip Sensor (PLUX Wireless Biosignals S.A.) 235 Appendix V. The technical note of Blood Volume Pulse (BVP) Finger Clip Sensor (PLUX Wireless Biosignals S.A.) 237 Appendix VI. Baseline Comparison of MCI and Control Groups Across Dependent Variables in Pulse Wave Analysis 242 Appendix VII. Paired Samples T-Test for group = matched control, condition = cognition 251 Appendix VIII. Paired Samples T-Test for group = MCI, condition = cognition 253 Appendix IX. Hyperparameter Settings for Supervised Learning Models 255

    Aben, B., Stapert, S., & Blokland, A. (2012). About the Distinction between Working Memory and Short-Term Memory [Review]. Frontiers in Psychology, Volume 3 - 2012. https://doi.org/10.3389/fpsyg.2012.00301
    Adekanle, O., Sunmonu, T. A., Komolafe, M. A., & Ndububa, D. A. (2012). Cognitive functions in patients with liver cirrhosis: assessment using community screening interview for dementia. Annals of African medicine, 11(4), 222-229.
    Allan, L. M., Ballard, C. G., Allen, J., Murray, A., Davidson, A. W., McKeith, I. G., & Kenny, R. A. (2007). Autonomic dysfunction in dementia. Journal of Neurology, Neurosurgery & Psychiatry, 78(7), 671-677.
    Ampadu, J., & Morley, J. E. (2015). Heart failure and cognitive dysfunction. International Journal of Cardiology, 178, 12-23. https://doi.org/https://doi.org/10.1016/j.ijcard.2014.10.087
    Atkinson, R. C., & Shiffrin, R. M. (1968). Human memory: A proposed system and its control processes. In Psychology of learning and motivation (Vol. 2, pp. 89-195). Elsevier.
    Baddeley, A. D., & Hitch, G. (1974). Working Memory. In G. H. Bower (Ed.), Psychology of Learning and Motivation (Vol. 8, pp. 47-89). Academic Press. https://doi.org/https://doi.org/10.1016/S0079-7421(08)60452-1
    Badura, A., Masłowska, A., Myśliwiec, A., & Piętka, E. (2021). Multimodal signal analysis for pain recognition in physiotherapy using wavelet scattering transform. Sensors, 21(4), 1311.
    Bajaj, J. S., Heuman, D. M., Sterling, R. K., Sanyal, A. J., Siddiqui, M., Matherly, S., Luketic, V., Stravitz, R. T., Fuchs, M., & Thacker, L. R. (2015). Validation of EncephalApp, smartphone-based Stroop test, for the diagnosis of covert hepatic encephalopathy. Clinical Gastroenterology and Hepatology, 13(10), 1828-1835. e1821.
    Battista, P., Salvatore, C., Berlingeri, M., Cerasa, A., & Castiglioni, I. (2020). Artificial intelligence and neuropsychological measures: The case of Alzheimer's disease. Neurosci Biobehav Rev, 114, 211-228. https://doi.org/10.1016/j.neubiorev.2020.04.026
    Belleville, S., Chertkow, H., & Gauthier, S. (2007). Working memory and control of attention in persons with Alzheimer's disease and mild cognitive impairment. Neuropsychology, 21(4), 458-469. https://doi.org/10.1037/0894-4105.21.4.458
    Britton, A., Singh-Manoux, A., Hnatkova, K., Malik, M., Marmot, M. G., & Shipley, M. (2008). The association between heart rate variability and cognitive impairment in middle-aged men and women. The Whitehall II cohort study. Neuroepidemiology, 31(2), 115-121. https://doi.org/10.1159/000148257
    Campbell, J. I., & Xue, Q. (2001). Cognitive arithmetic across cultures. Journal of experimental psychology: General, 130(2), 299.
    Chang, C.-H., Lin, C.-H., & Lane, H.-Y. (2021). Machine learning and novel biomarkers for the diagnosis of Alzheimer’s disease. International journal of molecular sciences, 22(5), 2761.
    Chang, C. W., Liao, K. M., Chang, Y. T., Wang, S. H., Chen, Y. C., & Wang, G. C. (2019). The effect of radial pulse spectrum on the risk of major adverse cardiovascular events in patients with type 2 diabetes. Journal of Diabetes and its Complications, 33(2), 160-164.
    Chang, C. W., Liao, K. M., Chen, Y. C., Wang, S. H., Jan, M. Y., & Wang, G. C. (2018). Radial pulse spectrum analysis as risk markers to improve the risk stratification of silent myocardial ischemia in type 2 diabetic patients. IEEE journal of translational engineering in health and medicine, 6, 1-9.
    Chang, Y. W., Hsiu, H., Yang, S. H., Fang, W. H., & Tsai, H. C. (2016). Characteristics of beat-to-beat photoplethysmography waveform indexes in subjects with metabolic syndrome. Microvascular Research, 106, 80-87.
    Chen, C.-C., Chang, C.-K., Chiu, C.-C., Yang, T.-Y., Hao, W.-R., Lin, C.-H., Fang, Y.-A., Jian, W., Hsu, M.-H., Yang, T.-L., Liu, J.-C., & Hsiu, H. (2022). Machine Learning Analyses Revealed Distinct Arterial Pulse Variability According to Side Effects of Pfizer-BioNTech COVID-19 Vaccine (BNT162b2). Journal of Clinical Medicine, 11(20), 6119. https://www.mdpi.com/2077-0383/11/20/6119
    Chen, C. C., Lin, S. C., Young, M. S., & Yang, C. L. (2014). Accumulated mental stress study using the meridians of traditional Chinese medicine with photoplethysmography. The Journal of Alternative and Complementary Medicine, 20(11), 860-867.
    Chen, C. Y., Wang, W. K., Kao, T., Yu, B. C., & Chiang, B. C. (1993). Spectral analysis of radial pulse in patients with acute, uncomplicated myocardial infarction. Jpn Heart J, 34(2), 131-143. https://doi.org/10.1536/ihj.34.131
    Chen, J.-H., Lin, K.-P., & Chen, Y.-C. (2009). Risk factors for dementia. Journal of the Formosan Medical Association, 108(10), 754-764.
    Chen, P. J., Wu, H. K., Hsu, P. C., Lo, L. C., & Chang, H. H. (2020). Effects of Five Daily Activities on Harmonic Analysis of the Radial Pulse. Evid Based Complement Alternat Med, 2020, 6095674. https://doi.org/10.1155/2020/6095674
    Christa Maree Stephan, B., Minett, T., Pagett, E., Siervo, M., Brayne, C., & McKeith, I. G. (2013). Diagnosing Mild Cognitive Impairment (MCI) in clinical trials: a systematic review. BMJ Open, 3(2), e001909. https://doi.org/10.1136/bmjopen-2012-001909
    Ciećko-Michalska, I., Wójcik, J., Senderecka, M., Wyczesany, M., Binder, M., Szewczyk, J., Dziedzic, T., Słowik, A., & Mach, T. (2013). Cognitive functions in patients with liver cirrhosis: a tendency to commit more memory errors. Med Sci Monit, 19, 283-288. https://doi.org/10.12659/msm.883890
    Ciesielska, N., Sokołowski, R., Mazur, E., Podhorecka, M., Polak-Szabela, A., & Kędziora-Kornatowska, K. (2016). Is the Montreal Cognitive Assessment (MoCA) test better suited than the Mini-Mental State Examination (MMSE) in mild cognitive impairment (MCI) detection among people aged over 60? Meta-analysis. Psychiatr Pol, 50(5), 1039-1052.
    de Roos, A., van der Grond, J., Mitchell, G., & Westenberg, J. (2017). Magnetic resonance imaging of cardiovascular function and the brain: is dementia a cardiovascular-driven disease? Circulation, 135(22), 2178-2195.
    Fé, A., Sousa, J., & Gamboa, H. (2012). Development of a Pulse Oximeter and Blood Pressure Measurement Device. BIODEVICES,
    Friso-van den Bos, I., van der Ven, S. H. G., Kroesbergen, E. H., & van Luit, J. E. H. (2013). Working memory and mathematics in primary school children: A meta-analysis. Educational Research Review, 10, 29-44. https://doi.org/https://doi.org/10.1016/j.edurev.2013.05.003
    Gagnon, L. G., & Belleville, S. (2011). Working memory in mild cognitive impairment and Alzheimer's disease: Contribution of forgetting and predictive value of complex span tasks. Neuropsychology, 25(2), 226-236. https://doi.org/10.1037/a0020919
    Ghayedi, Z., Banihashemian, K., Shirdel, S., Adineh Salarvand, R., Zare, M., zeinali, s., & Ghahri Lalaklou, Z. (2024). A Review on the Comparison of Working Memory Performance, Cognitive Function, and Behavioral, and Psychological Symptoms across Normal Aging, Mild Cognitive Impairment, and Alzheimer's Disease. Neurology Letters, 3(Special Issue (Diagnostic and Therapeutic advances in Neurodegenerative diseases)), 26-38. https://doi.org/10.61186/nl.3.2.26
    Gorelick, P. B., Scuteri, A., Black, S. E., Decarli, C., Greenberg, S. M., Iadecola, C., Launer, L. J., Laurent, S., Lopez, O. L., Nyenhuis, D., Petersen, R. C., Schneider, J. A., Tzourio, C., Arnett, D. K., Bennett, D. A., Chui, H. C., Higashida, R. T., Lindquist, R., Nilsson, P. M., . . . Seshadri, S. (2011). Vascular contributions to cognitive impairment and dementia: a statement for healthcare professionals from the american heart association/american stroke association. Stroke, 42(9), 2672-2713. https://doi.org/10.1161/STR.0b013e3182299496
    Gouras, G. K., Tampellini, D., Takahashi, R. H., & Capetillo-Zarate, E. (2010). Intraneuronal β-amyloid accumulation and synapse pathology in Alzheimer’s disease. Acta neuropathologica, 119, 523-541.
    Henriksen, J. H., Fuglsang, S., & Bendtsen, F. (2012). Arterial pressure profile in patients with cirrhosis: Fourier analysis of arterial pulse in relation to pressure level, stroke volume, and severity of disease: on the reduction of afterload in the hyperdynamic syndrome. Scandinavian journal of gastroenterology, 47(5), 580-590.
    Hsiao, K. Y., Kang, J. H., Wu, Y. S., Chang, H. H., & Yang, C. T. (2023). Peripheral pulse harmonic analysis and its clinical application: A systematic review. Journal of Traditional and Complementary Medicine.
    Hsieh, C. W., Mao, C. W., Young, M. S., & Yeh, T. L. (2003). Assessment of parasympathetic control of blood vessel by pulsation spectrum and comparison with spectral method of RR intervals. Biomedical Engineering: Applications, Basis and Communications, 15(01), 8-16.
    Hsiu, H., Hsu, C. L., Chen, C. T., Hsu, W. C., & Lin, F. C. (2013). Effects of acupuncture on the harmonic components of the radial arterial blood-pressure waveform in stroke patients. Biorheology, 50(1-2), 69-81.
    Hsiu, H., Hsu, C. L., & Wu, T. L. (2011). Effects of different contacting pressure on the transfer function between finger photoplethysmographic and radial blood pressure waveforms. Proc Inst Mech Eng H, 225(6), 575-583. https://doi.org/10.1177/0954411910396288
    Hsiu, H., Huang, S. M., Hsu, C. L., Hu, S. F., & Lin, H. W. (2012). Effects of cold stimulation on the harmonic structure of the blood pressure and photoplethysmography waveforms. Photomed Laser Surg, 30(2), 77-84. https://doi.org/10.1089/pho.2011.3124
    Hsiu, H., Liu, J.-C., Yang, C.-J., Chen, H.-S., Wu, M.-S., Hao, W.-R., Lee, K.-Y., Hu, C.-J., Wang, Y.-H., & Fang, Y.-A. (2022a). Discrimination of vascular aging using the arterial pulse spectrum and machine-learning analysis. Microvascular Research, 139, 104240. https://doi.org/https://doi.org/10.1016/j.mvr.2021.104240
    Hsiu, H., Liu, J. C., Yang, C. J., Chen, H. S., Wu, M. S., Hao, W. R., Lee, K. Y., Hu, C. J., Wang, Y. H., & Fang, Y. A. (2022b). Discrimination of vascular aging using the arterial pulse spectrum and machine-learning analysis. Microvascular Research, 139, 104240.
    Hsu, T. L., Chao, P. T., Hsiu, H., Wang, W. K., Li, S. P., & Wang, Y. Y. L. (2006). Organ-specific ligation-induced changes in harmonic components of the pulse spectrum and regional vasoconstrictor selectivity in Wistar rats. Experimental Physiology, 91(1), 163-170. https://doi.org/https://doi.org/10.1113/expphysiol.2005.031575
    Huang, Y. C., Chang, Y. H., Cheng, S. M., Lin, S. J. S., Lin, C. J., & Su, Y. C. (2019). Applying pulse spectrum analysis to facilitate the diagnosis of coronary artery disease. Evidence-Based Complementary and Alternative Medicine, 2019.
    Islam, N., Hashem, R., Gad, M., Brown, A., Levis, B., Renoux, C., Thombs, B. D., & McInnes, M. D. (2023). Accuracy of the Montreal Cognitive Assessment tool for detecting mild cognitive impairment: A systematic review and meta‐analysis. Alzheimer's & Dementia. https://doi.org/10.1002/alz.13040
    Janoutová, J., Šerý, O., Hosák, L., & Janout, V. (2015). Is Mild Cognitive Impairment a Precursor of Alzheimer's Disease? Short Review. Cent Eur J Public Health, 23(4), 365-367. https://doi.org/10.21101/cejph.a4414
    Jarrold, W., Peintner, B., Wilkins, D., Vergryi, D., Richey, C., Gorno-Tempini, M. L., & Ogar, J. (2014). Aided diagnosis of dementia type through computer-based analysis of spontaneous speech. Proceedings of the Workshop on Computational Linguistics and Clinical Psychology: From Linguistic Signal to Clinical Reality,
    Jeon, Y. J., Kim, J. U., Lee, H. J., Lee, J., Ryu, H. H., Lee, Y. J., & Kim, J. Y. (2011). A Clinical Study of the Pulse Wave Characteristics at the Three Pulse Diagnosis Positions of Chon, Gwan and Cheok. Evidence-Based Complementary and Alternative Medicine, 2011, 1-9. https://doi.org/10.1093/ecam/nep150
    Jia, H. X., Tang, Y. Y., & Zhang, J. Z. (2000). The Cognitive Psychological Implications of TCM Doctrine of Five Organs of Mentality and Their Application in the Clinical Practice of Psychiatry. Journal of Beijing University of TCM, 23(S1), 1-3.
    Jindal, G. D., Jain, R. K., Bhat, S. N., Pande, J. A., Sawant, M. S., Jindal, S. K., & Deshpande, A. K. (2017). Harmonic analysis of peripheral pulse for screening subjects at high risk of diabetes. Journal of Medical Engineering & Technology, 41(6), 437-443.
    Kim, S., Kang, Y., Yu, K. H., & Lee, B. C. (2016). Disproportionate Decline of Executive Functions in Early Mild Cognitive Impairment, Late Mild Cognitive Impairment, and Mild Alzheimer's Disease. Dement Neurocogn Disord, 15(4), 159-164. https://doi.org/10.12779/dnd.2016.15.4.159
    Klöppel, S., Stonnington, C. M., Chu, C., Draganski, B., Scahill, R. I., Rohrer, J. D., Fox, N. C., Jack Jr, C. R., Ashburner, J., & Frackowiak, R. S. (2008). Automatic classification of MR scans in Alzheimer's disease. Brain, 131(3), 681-689.
    Klekociuk, S. Z., & Summers, M. J. (2014). Lowered performance in working memory and attentional sub-processes are most prominent in multi-domain amnestic mild cognitive impairment subtypes. Psychogeriatrics, 14(1), 63-71. https://doi.org/https://doi.org/10.1111/psyg.12042
    Lamar, M., Price, C. C., Libon, D. J., Penney, D. L., Kaplan, E., Grossman, M., & Heilman, K. M. (2007). Alterations in working memory as a function of leukoaraiosis in dementia. Neuropsychologia, 45(2), 245-254. https://doi.org/https://doi.org/10.1016/j.neuropsychologia.2006.07.009
    Li, Q. Y., Li, X. M., Hu, H. Y., Ma, Y. H., Ou, Y. N., Wang, A. Y., Tan, L., & Yu, J. T. (2023). Associations of Lung Function Decline with Risks of Cognitive Impairment and Dementia: A Meta-Analysis and Systematic Review. J Alzheimers Dis, 92(3), 853-873. https://doi.org/10.3233/jad-221136
    Li, Z. Y., Cao, Y., & Jia, H. X. (2019). The neuropsychological connotation of“liver storing soul”in traditional Chinese medicine. Global Traditional Chinese Medicine, 12(1), 33-36.
    Li, Z. Y., Cao, Y., & Jia, H. X. (2020). Neuropsychological connotation of ‘lung storing inferior spirit’ in TCM. China Journal of Traditional Chinese Medicine and Pharmacy, 35(2), 4.
    Li, Z. Y., & Jia, H. X. (2020). Neuropsychological connotation of traditional Chinese medicine of ‘heart storing spirit’. China Journal of Traditional Chinese Medicine and Pharmacy, 35(11), 4.
    Liao, K. M., Chang, C. W., Wang, S. H., Chang, Y. T., Chen, Y. C., & Wang, G. C. (2019). The first harmonic of radial pulse wave predicts major adverse cardiovascular and microvascular events in patients with type 2 diabetes. Journal of Diabetes and its Complications, 33(11), 107420.
    Lin, F. C., Hsiu, H., Chiu, H. S., Chen, C. T., & Hsu, C. H. (2020). Characteristics of pulse-waveform and laser-Doppler indices in frozen-shoulder patients. Biomedical Signal Processing and Control, 56, 101718.
    Lin, H. Y., Zhao, Y. P., Xu, G. P., Li, Y. S., Xie, W. Y., Bai, L. H., & Jin, H. (2017). Weaker cognitive control abilities of Pi (Spleen) qi-deficient individuals supported Chinese medicine diagnosis. Chinese Journal of Integrative Medicine. https://doi.org/10.1007/s11655-017-2967-x
    Lin, S. K., Hsiu, H., Chen, H. S., & Yang, C. J. (2021). Classification of patients with Alzheimer’s disease using the arterial pulse spectrum and a multilayer-perceptron analysis. Scientific reports, 11(1), 1-14.
    Lin Wang, Y. Y., Sze, W. K., Bau, J. G., Wang, S. H., Jan, M. Y., Hsu, T. L., & Wang, W. K. (2008). The ventricular-arterial coupling system can be analyzed by the eigenwave modes of the whole arterial system. Applied Physics Letters, 92(15), 153901. https://doi.org/10.1063/1.2911746
    Lin, Z., Huang, T., Zheng, G., Chen, R., Yao, M., Liu, W., & Li, S. (2022). Study on the correlation between Chinese medicine syndrome and cognitive dysfunction in mild cognitive impairment. Evidence‐Based Complementary and Alternative Medicine, 2022(1), 7117704.
    Liu, J. C., Hsu, Y. P., Zhu, J. C., Hao, W. R., Yang, T. Y., Sung, L. C., Kao, P. F., Hwang, J., & Hsiu, H. (2021). Beat-to-beat and spectral analyses of the noninvasive radial pulse and laser-Doppler signals in patients with hypertension. Clinical Hemorheology and Microcirculation(Preprint), 1-15.
    Liu, X., Cao, Y., Hou, H., Chen, X., & Chen, Y. (2017). Common^ sup1^ H-MRS Characteristics in Patients With Alzheimer's Disease and Vascular Dementia Diagnosed With Kidney Essence Deficiency Syndrome: A Preliminary Study. Alternative Therapies in Health and Medicine, 23(3), 12.
    Lu, W. A. (2006). Pulse spectrum analysis in primary hypertension patients. Taipei City Medical Journal, 3(9), 859-868.
    Lu, W. A., Chen, Y. S., & Kuo, C. D. (2016). Increased first and second pulse harmonics in Tai Chi Chuan practitioners. BMC complementary and alternative medicine, 16(1), 1-9.
    Lu, W. A., Cheng, C. H., Wang, Y. Y. L., & Wang, W. K. (1996). Pulse spectrum analysis of hospital patients with possible liver problems. The American journal of Chinese medicine, 24(03n04), 315-320.
    Lu, W. A., Wang, Y. Y. L., & Wang, W. K. (1999). Pulse analysis of patients with severe liver problems. Studying pulse spectrums to determine the effects on other organs. IEEE Engineering in Medicine and Biology Magazine, 18(1), 73-75.
    Ma, D. N., Wang, S. S., Shi, Y., Ni, S. L., Tang, M. K., & Xu, A. L. (2021). The development of traditional Chinese medicine. Journal of Traditional Chinese Medical Sciences, 8, S1-S9.
    Maroco, J., Silva, D., Rodrigues, A., Guerreiro, M., Santana, I., & de Mendonça, A. (2011). Data mining methods in the prediction of Dementia: A real-data comparison of the accuracy, sensitivity and specificity of linear discriminant analysis, logistic regression, neural networks, support vector machines, classification trees and random forests. BMC research notes, 4(1), 1-14.
    Mohammed, H. M., & Hassane, A. E.-S. (2018). Heart-Lung Machine: How Critical Care Nurses Detect Pumphead? International Journal of Novel Research in Healthcare and Nursing, 5(1), 6.
    Nasreddine, Z. S., Phillips, N. A., Bédirian, V., Charbonneau, S., Whitehead, V., Collin, I., Cummings, J. L., & Chertkow, H. (2005). The Montreal Cognitive Assessment, MoCA: a brief screening tool for mild cognitive impairment. Journal of the American Geriatrics Society, 53(4), 695-699.
    Nelson, A. R., Sweeney, M. D., Sagare, A. P., & Zlokovic, B. V. (2016). Neurovascular dysfunction and neurodegeneration in dementia and Alzheimer's disease. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, 1862(5), 887-900.
    Ni, M. (1995). The yellow emperor's classic of medicine: a new translation of the neijing suwen with commentary. Shambhala Publications.
    Ning, Y., Jia, W., Zhu, H., Chen, P., Yin, D., & Jia, H. (2019). Memory impairment in patients with spleen deficiency syndrome: Evidence from a resting-state fMRI study. European Journal of Integrative Medicine, 32, 101007. https://doi.org/https://doi.org/10.1016/j.eujim.2019.101007
    Ning, Y., Yin, D., Jia, W., Zhu, H., Xue, S., Liu, J., & Jia, H. (2018). Cognitive impairment in patients with kidney deficiency syndrome: A resting-state fMRI study. European Journal of Integrative Medicine, 24, 49-53. https://doi.org/https://doi.org/10.1016/j.eujim.2018.10.018
    The World Health Organization. (2021). Global status report on the public health response to dementia.
    Ovsenik, A., Podbregar, M., & Fabjan, A. (2021). Cerebral blood flow impairment and cognitive decline in heart failure. Brain and Behavior, 11(6), e02176.
    Panza, F., Frisardi, V., Seripa, D., P Imbimbo, B., Sancarlo, D., D'Onofrio, G., Addante, F., Paris, F., Pilotto, A., & Solfrizzi, V. (2011). Metabolic syndrome, mild cognitive impairment and dementia. Current Alzheimer Research, 8(5), 492-509.
    Parikh, N. S., Wahbeh, F., Tapia, C., Ianelli, M., Liao, V., Jaywant, A., Kamel, H., Kumar, S., & Iadecola, C. (2024). Cognitive impairment and liver fibrosis in non-alcoholic fatty liver disease. BMJ Neurology Open, 6(1), e000543.
    Park, M. S., & Kim, E. J. (2023). A Correlative Relationship Between Heart Failure and Cognitive Impairment: A Narrative Review. J Korean Med Sci, 38(39), e334. https://doi.org/10.3346/jkms.2023.38.e334
    Pinto, T. C. C., Machado, L., Bulgacov, T. M., Rodrigues-Júnior, A. L., Costa, M. L. G., Ximenes, R. C. C., & Sougey, E. B. (2019). Is the Montreal Cognitive Assessment (MoCA) screening superior to the Mini-Mental State Examination (MMSE) in the detection of mild cognitive impairment (MCI) and Alzheimer’s Disease (AD) in the elderly? International Psychogeriatrics, 31(4), 491-504. https://doi.org/10.1017/S1041610218001370
    Russell, S. J., & Norvig, P. (2016). Artificial intelligence: a modern approach. pearson.
    Saunders, N. L. J., & Summers, M. J. (2010). Attention and working memory deficits in mild cognitive impairment. Journal of Clinical and Experimental Neuropsychology, 32(4), 350-357. https://doi.org/10.1080/13803390903042379
    Saunders, N. L. J., & Summers, M. J. (2011). Longitudinal deficits to attention, executive, and working memory in subtypes of mild cognitive impairment. Neuropsychology, 25(2), 237-248. https://doi.org/10.1037/a0021134
    Schiff, S., Mapelli, D., Vallesi, A., Orsato, R., Gatta, A., Umiltà, C., & Amodio, P. (2006). Top-down and bottom-up processes in the extrastriate cortex of cirrhotic patients: An ERP study. Clinical Neurophysiology, 117(8), 1728-1736. https://doi.org/https://doi.org/10.1016/j.clinph.2006.04.020
    Shah, H., Albanese, E., Duggan, C., Rudan, I., Langa, K. M., Carrillo, M. C., Chan, K. Y., Joanette, Y., Prince, M., & Rossor, M. (2016). Research priorities to reduce the global burden of dementia by 2025. The Lancet Neurology, 15(12), 1285-1294.
    Shang, X., Scott, D., Chan, R. K., Zhang, L., & He, M. (2021). Association of Pulmonary Function With Cognitive Decline in Older Adults: A Nationwide Longitudinal Study in China. The Journals of Gerontology: Series A, 76(8), 1423-1430. https://doi.org/10.1093/gerona/glab096
    Shelley, K., Shelley, S., & Lake, C. (2001). Pulse oximeter waveform: photoelectric plethysmography. Clinical monitoring, 2.
    Sherebrin, M., & Sherebrin, R. (2002). Frequency analysis of the peripheral pulse wave detected in the finger with a photoplethysmograph. IEEE Transactions on Biomedical Engineering, 37(3), 313-317.
    Shokhirev, M. N., & Johnson, A. A. (2022). An integrative machine-learning meta-analysis of high-throughput omics data identifies age-specific hallmarks of Alzheimer’s disease. Ageing Research Reviews, 101721.
    So, A., Hooshyar, D., Park, K. W., & Lim, H. S. (2017). Early diagnosis of dementia from clinical data by machine learning techniques. Applied Sciences, 7(7), 651.
    Sotil, E. U., Gottstein, J., Ayala, E., Randolph, C., & Blei, A. T. (2009). Impact of preoperative overt hepatic encephalopathy on neurocognitive function after liver transplantation. Liver Transplantation, 15(2), 184-192. https://doi.org/https://doi.org/10.1002/lt.21593
    Steinbach, E. J., & Harshman, L. A. (2022). Impact of Chronic Kidney Disease on Brain Structure and Function [Review]. Frontiers in Neurology, 13. https://doi.org/10.3389/fneur.2022.797503
    Sun, Y., Lee, H.-J., Yang, S.-C., Chen, T.-F., Lin, K.-N., Lin, C.-C., Wang, P.-N., Tang, L.-Y., & Chiu, M.-J. (2014). A Nationwide Survey of Mild Cognitive Impairment and Dementia, Including Very Mild Dementia, in Taiwan. PLoS ONE, 9(6), e100303. https://doi.org/10.1371/journal.pone.0100303
    Sun, Z., Ping, P., Li, Y., Feng, L., Liu, F., Zhao, Y., Yao, Y., Zhang, P., & Fu, S. (2022). Relationships Between Traditional Chinese Medicine Constitution and Age-Related Cognitive Decline in Chinese Centenarians [Original Research]. Frontiers in Aging Neuroscience, Volume 14 - 2022. https://doi.org/10.3389/fnagi.2022.870442
    Tan, W., Qi, L., Hu, X., & Tan, Z. (2022). Research progress in traditional Chinese medicine in the treatment of Alzheimer's disease and related dementias. Front Pharmacol, 13, 921794. https://doi.org/10.3389/fphar.2022.921794
    Tanaka, H., Nagata, Y., Uematsu, M., Takebayashi, T., Hanada, K., Inokawa, M., Fukuhara, K., Ogawa, Y., Haga, D., Kakegawa, Y., & Nishikawa, T. (2015). Development of the Cognitive Test for Severe Dementia. Dement Geriatr Cogn Disord, 40(1-2), 94-106. https://doi.org/10.1159/000430089
    Testai, F. D., Gorelick, P. B., Chuang, P.-Y., Dai, X., Furie, K. L., Gottesman, R. F., Iturrizaga, J. C., Lazar, R. M., Russo, A. M., Seshadri, S., Wan, E. Y., Council, o. b. o. t. A. H. A. S., Council on Cardiopulmonary, C. C., Perioperative, Resuscitation, Cardiovascular, C. o., Nursing, S., & Hypertension, C. o. (2024). Cardiac Contributions to Brain Health: A Scientific Statement From the American Heart Association. Stroke, 55(12), e425-e438. https://doi.org/doi:10.1161/STR.0000000000000476
    Tombaugh, T. N., & McIntyre, N. J. (1992). The mini‐mental state examination: a comprehensive review. Journal of the American Geriatrics Society, 40(9), 922-935.
    Trzepacz, P. T., Hochstetler, H., Wang, S., Walker, B., Saykin, A. J., & Initiative, A. s. D. N. (2015). Relationship between the Montreal Cognitive Assessment and Mini-mental State Examination for assessment of mild cognitive impairment in older adults. BMC geriatrics, 15, 1-9.
    Wang, J., Song, R., Dove, A., Qi, X., Ma, J., Laukka, E. J., Bennett, D. A., & Xu, W. (2022). Pulmonary function is associated with cognitive decline and structural brain differences. Alzheimers Dement, 18(7), 1335-1344. https://doi.org/10.1002/alz.12479
    Wang, N., Yu, Y., Huang, D., Xu, B., Liu, J., Li, T., Xue, L., Shan, Z., Chen, Y., & Wang, J. (2015). Pulse diagnosis signals analysis of fatty liver disease and cirrhosis patients by using machine learning. The Scientific World Journal, 2015.
    Wang, W. K. (1989). Resonance of organs with the heart. Biomedical Engineering: An International Symposium,
    Wang, W. K. (2002). The joy of Qi Dakuan Publishing Co., Ltd.
    Wang, W. K., Bau, J. G., Hsu, T. L., & Wang, Y. Y. L. (2000). Influence of spleen meridian herbs on the harmonic spectrum of the arterial pulse. The American journal of Chinese medicine, 28(02), 279-289.
    Wang, W. K., Chen, H. L., Hsu, T. L., & Wang, Y. Y. L. (1994). Alteration of pulse in human subjects by three Chinese herbs. The American journal of Chinese medicine, 22(02), 197-203.
    Wang, W. K., Hsu, T. L., Bau, J. G., & Wang, Y. Y. L. (2003). Evaluation of herbal formulas by pulse analysis method. Acta Pharmacologica Sinica, 24(2), 145-151.
    Wang, W. K., Hsu, T. L., Chang, H. C., & Wang, Y. Y. L. (1995). Effect of acupuncture at Tsu San Li (St-36) on the pulse spectrum. The American journal of Chinese medicine, 23(02), 121-130.
    Wang, W. K., Hsu, T. L., Chang, H. C., & Wang, Y. Y. L. (1996). Effect of acupuncture at Tai-Tsih (K-3) on the pulse spectrum. The American journal of Chinese medicine, 24(03n04), 305-313.
    Wang, W. K., Hsu, T. L., Chang, H. C., & Wang, Y. Y. L. (2000). Effect of acupuncture at Hsien-Ku (St-43) on the pulse spectrum and a discussion of the evidence for the frequency structure of Chinese medicine. The American journal of Chinese medicine, 28(01), 41-55.
    Wang, W. K., & Lin-Wang, Y. Y. (1991). A discussion on traditional Chinese medicine from the perspective of blood flow theory. Chinese Journal of Medical Engineering, 11(1), 14.
    Wang, Y. Y. L., Chang, S. L., Wu, Y. E., Hsu, T. L., & Wang, W. K. (1991). Resonance. The missing phenomenon in hemodynamics. Circ Res, 69(1), 246-249. https://doi.org/10.1161/01.res.69.1.246
    Wang, Y. Y. L., Hsu, T. L., Jan, M. Y., & Wang, W. K. (2010). Theory and applications of the harmonic analysis of arterial pressure pulse waves. Journal of Medical and Biological Engineering, 30(3), 125-131.
    Wang, Y. Y. L., Wang, S. H., Jan, M. Y., & Wang, W. K. (2012). Past, Present, and Future of the Pulse Examination (脈診 mài zhěn). Journal of Traditional and Complementary Medicine, 2(3), 164-177. https://doi.org/https://doi.org/10.1016/S2225-4110(16)30096-7
    Wang, Y. Y. L., & Wang, W. K. (2013). A hemodynamics model to study the collective behavior of the ventricular-arterial system. Journal of Applied Physics, 113(2), 024702. https://doi.org/10.1063/1.4775754
    Wiseman, N. (1998). A practical dictionary of Chinese medicine. paradigm publications.
    Wiseman, N., & Feng, Y. (1998). A practical dictionary of Chinese medicine. paradigm publications.
    Wu, L. W., OuYoung, T., Chiu, Y. C., Hsieh, H. F., & Hsiu, H. (2022). Discrimination between possible sarcopenia and metabolic syndrome using the arterial pulse spectrum and machine-learning analysis. Scientific Reports, 12(1), 21452. https://doi.org/10.1038/s41598-022-26074-5
    Yaffe, K., Petersen, R. C., Lindquist, K., Kramer, J., & Miller, B. (2006). Subtype of mild cognitive impairment and progression to dementia and death. Dement Geriatr Cogn Disord, 22(4), 312-319. https://doi.org/10.1159/000095427
    Yang, Z.-T., Chen, H.-J., Chen, Q.-F., & Lin, H. (2018). Disrupted brain intrinsic networks and executive dysfunction in cirrhotic patients without overt hepatic encephalopathy. Frontiers in Neurology, 9, 14.
    Yin, D. Q., Jia, H. X., & Zhou, F. (2014). The Neuropsychological Connotation of Chinese Medicine Notion of Kidney Holding Essence and Administrating Chi. Chinese Archives of Traditional Chinese Medicine, 32(1), 141-143.
    Young, S. T., Wang, W. K., Chang, L. S., & Kuo, T. S. (1989a). Specific frequency properties of renal and superior mesenteric arterial beds in rats. Cardiovascular Research, 23(6), 465-467. https://doi.org/10.1093/cvr/23.6.465
    Young, S. T., Wang, W. K., Chang, L. S., & Kuo, T. S. (1989b). Specific frequency properties of renal and superior mesenteric arterial beds in rats. Cardiovasc Res, 23(6), 465-467. https://doi.org/10.1093/cvr/23.6.465
    Young, S. T., Wang, W. K., Chang, L. S., & Kuo, T. S. (1992). The filter properties of the arterial beds of organs in rats. Acta physiologica Scandinavica, 145(4), 401-406. https://doi.org/https://doi.org/10.1111/j.1748-1716.1992.tb09381.x
    Yu, Y., Ning, Y. Z., & Jia, H. X. (2018). Modern Psychology Connotation of Spleen In Storing Idea and In Charge of Thought. Journal of Basic Chinese Medicine, 24(7), 890-893.
    Zhang, L. X., & Liu, X. Q. (2007). A study on reliability and validity of MOCA scale of Chinese version. Chinese Nursing Research, 21(11), 2906-2907.
    Zheng, D., Dong, X., Sun, H., Xu, Y., Ma, Y., & Wang, X. (2012). The overall impairment of core executive function components in patients with amnestic mild cognitive impairment: a cross-sectional study. BMC Neurology, 12(1), 138. https://doi.org/10.1186/1471-2377-12-138
    Zhu, F., Li, X., Tang, H., He, Z., Zhang, C., Hung, G.-U., Chiu, P.-Y., & Zhou, W. (2020). Machine learning for the preliminary diagnosis of dementia. Scientific Programming, 2020, 1-10.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE