| 研究生: |
林全雯 Lin, Chuan-Wen |
|---|---|
| 論文名稱: |
微波法製備硫化鎘奈米微粒及電噴霧法製備硫化鎘薄膜及光電性質之研究 Preparation of Nano-sized CdS Particles by Microwave Heating Method and Preparation of CdS Thin Films by Electrospraying Method |
| 指導教授: |
陳進成
Chen, Chin-Cheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 134 |
| 中文關鍵詞: | 半導體 、硫化鎘 |
| 外文關鍵詞: | semiconductor, cadmium sulfate |
| 相關次數: | 點閱:75 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
目前一般使用的照明設備,多數會隨著發光過程產生熱,使得全球廢熱增加,且發光效率不高造成能源的浪費,令我們生存的環境更加的惡化;廢棄的日光燈管也造成了汞污染等的問題,因此開發具有體積小、無水銀污染、壽命長、耗能少、發光效率高等優點之半導體發光二極體是節約能源的必然趨勢。
本研究利用化學溶膠法配合微波加熱法,微波加熱快速達到高溫及迅速冷卻終止反應,使反應在高成核與低成長的條件下進行。利用N,N -二甲基甲醯胺作反應溶劑,將微波反應生成的硫化鎘穩定分散在其中,形成穩定的膠體溶液。探討不同微波時間(溫度)、前趨物濃度及反應溶劑組成對粒徑之影響。利用電噴霧法噴出含有硫化鎘奈米微粒的帶電液滴,經高溫爐將液體蒸發,奈米微粒由電場收集器收集在矽基板上,根據微粒電移率的不同,在特定電壓下收集特定大小的微粒製成薄膜。微粒的分析利用UV及PL量測吸收與發光波長,TEM決定粒子大小;薄膜分析則利用SEM觀察表面型態及EDS分析薄膜組成。
利用微波加熱能簡便安全的製備出2.6nm到3.7nm的奈米硫化鎘微粒。利用電場收集器收集粒徑在5nm以下的硫化鎘薄膜,收集的薄膜並不緻密,且粒徑都比預設的收集粒徑大。
Light-emitting diodes (LEDs) have the advantages of small volume, long lifetime, no mercury pollution, low energy loss, and high emission efficiency. Developments of LEDs not only serve to improve the disadvantages of traditional illuminants but also save the energy and protect the environment of the world.
In the study, CdS nanoparticles are synthesized by sol-gel method assisted with microwave heating. The microwave assisted heating has been used to control the nucleation rate and growth rate of nanoparticles. Stable colloidal CdS solution was prepared using DMF as solution. We study the influence of reaction temperature, precursor concentration and solvent on the size of CdS nanoparticles. CdS thin films were prepared by electrospraying CdS particles contained solution with the assistance of an electrostatic collector. Particles of a specific diameter were collected for a specific voltage according to their mobility. The size of nanoparticles was analyzed by TEM. Optical properties of CdS nanoparticles were observed with UV and PL spectrometer. Thin film morphology was analyzed by SEM.
Using microwave heating to prepare nanoparticles is a simple, safe and easy to control. The experimental results show that the smallest CdS nanoparticle size is 2.6nm. CdS thin films with a grain size less than 5nm wrer prepared with the assistance of electrostatic collector. The results show that the thin films were not very compact and the particle size is larger than we set to collect.
[1] M. George Craford, MRS bulletin, 25(10) (2000) 27
[2] N. Holonyak Jr. and S. F. Bevaqua, Appl. Phys. Lett., 1(4) (1962) 82
[3] M. George Craford, Circuits and Devices-IEEE, 8(5), 24 (1992)
[4] N. Savage, Technology Review, 103(5) (2000) 38
[5] 陳澤澎,“發光二極體的發展及新應用”,工業材料123 (1997) 74
[6] N. Holonyak, Jr., S. F. Bevacque, C. V. Bielan, and J. Lubowski, Appl. Phys. Lett., 3(3) (1963) 1
[7] D. G. Thomas, J. J. Hopfield, and C. J. Frosch, Phys. Rev. Lett., 15(22) (1965) 857
[8] M. J. Chou, D. C. Tsui, and G. Weimann, Appl. Phys. Lett., 47(6), (1985) 609
[9] M. A. Haase, J. Qiu, J. M. Depuyde, and H. Cheng, Appl. Phys. Lett., 59(11) (1991) 1272
[10] S. Nakamura, Kitamura, H. Umeya, A. Jia, M. Kobayashi, A. Yoshikawa, M. Shimotomai, Y. Kato, and K. Takahashi, Electronics Lett., 34(25) (1998) 2435
[11] A. Ishibashi, J. Crys. grow., 159 (1996) 555
[12] J. E. Macintyre(executive editor), F. M. Daniel, V. M. Stirling(assistant editors), Dictionary of Inorganic Compounds-Chemical Database ,1st Editions, Published by Charpman and Hall(1992)
[13] A. N. Goldstein, C. M. Echer, A. P. Alivisatos, Science, 256 (1992) 1425
[14] K. P. Jain, Physics of Semiconducting Nanostructures, Narosa Publication, 25(1997)
[15] J. Nanda, B. A. kuruvilla, K. V. P. Shafi, D. D. Sarma, Phys. Rev. B, 59 (1999) 7473
[16] A. D. Yoffe, Adv. Phys., 42 (1993) 173
[17] M. E. Wozniak, and A. Sen, Chem. Mater., 4 (1992) 753
[18] Y. Wang and N. Herron, J. Phys. Chem., 91 (1987) 257
[19] C. Petit, P. Lixon, and M. P. Pileni, J. Phys. Chem., 94 (1990) 1598
[20] N. Herron, Y. Wang, H. Eckert, J. Am. Chem. Soc., 112 (1990) 1322
[21] T. Vossmeyer, L. Katsikas, M. Giersig, I. G. Popovic, K. Diesner, A. Chemseddine, A. Eychmuller, and H. Weller, J. Phys. Chem., 98 (1994) 7665
[22] M. L. Steigerwald, A. P. Alivisatos, J. M. Gibson, T. D.Harris, R. Kortan, A. J. Muller, A. M. Thayer, T. M. Duncan, D. C. Douglass, L. E. Brus, J. Am. Chem. Soc., 110 (1988) 3046
[23] R. Rossetti, J. L. Ellison, J. M. Gibson, L. E. Brus, J. Chem. Phys., 80(9) (1984) 4464
[24] T. Gacoin, K. Lahlil, P. Larregaray, and J-P. Boilot, J. Phys. Chem. B, 105 (2001) 10228
[25] R. Reisfeld, J. Alloys and Compounds, 341 (2002) 56
[26] C. B. Murray, D.J. Norris, M.G. Bawendi, J. Am. Chem. Soc., 115 (1993) 8706
[27] Mike. Lazell, Paul O’Brien, J. Mater. Chem., 9 (1999) 1381
[28] H. Uda, H. Yonezawa, Y. Ohtsubo, M. Kosaka, H. Sonomura, Sol. Energy Mater. Sol. Cells, 75 (2003) 219
[29] H. Uda, T. Hujii, S. Lkegami, and H. Sonomura, Proceedings of the 26th IEEE PVSC, 523(1997)
[30] K. Senthil, D. Mangalaraj, Sa. K. Narayandass, R. Kesavamoorthy, G. L. N. Reddy, Nucl. Instr. and Meth. in Phys. Res. B., 173 (2001) 475
[31] K.El Assali, M. Boustani, A. Khiara, T. Bekkay, A. Outzourhit, E. L. Ameziane, J. C. Bernede, and J. Pouzet, Phys. Stat. Sol., 178 (2000) 701
[32] H. Ashour, K.El Assali, Phys. Stat. Sol., 184 (2001) 175
[33] E. Cordoncillo, P. Escribano, G. Monros, M. A. Tena, V. Orera, and J. Carda, J. Solid State Chem., 118 (1995) 1
[34] S. Gorer, G. Hodes, Y. Sorek, R. Reisfeld, Mater. Lett., 31 (1997) 209
[35] E. J. Dawnay, M. A. Fardad, Mino Green, and E. M. Yeatman, J. Mater. Res., 12 (1997) 3115
[36] S. M. Song, S. Y. Choi, J. Non-Cryst. Solids, 291 (2001) 50
[37] S. Coe, W. K. Woo, M. Bawend, and V. Bulovic, Nature, 420 (2002) 800
[38] D. B. Mitzi, L. L. Kosbar, C. E. Murray, M. Copel, and A. Afzali, Nature, 428 (2004) 299
[39] Z. Y. Pan, X. G. Peng, T. J. Li, J. Z. Liu, Appl. Sur. Sci., 108 (1997) 439
[40] P. Facci, V. Erokhin, A. Tronin, and C. Nicolini, J. Phys. Chem., 98 (1994) 13323
[41] Y. H. Ma and R. H. Bube, J. Electrochemical Soc., 124 (1977) 1430
[42] C. H. Chen, M. H. J. Emond, E. M. Kelder, B. Meester, and J. Schoonman, J. Aerosol Sci., 30 (1999) 959
[43] S. Leeuwenburgh, J. Wolke, J. Schoonman, and J. Jansen, J. Biomedical Mater. Res. A, 66 (2003) 330
[44] A. A. van Zomeren, E. M. Kelder, J. C. M. Marijnissen, and J. Schoonman, J. Aerosol Sci., 25 (1994) 1229
[45] M. Danek, K. F. Jensen, C. B. Murry, and M. G. Bawendi, J. Crys. Grow., 145 (1994) 714
[46] B. Su and K. L. Choy, Thin Solid Films, 361 (2000) 102
[47] 李柏宏 愛玉子之凝膠性質及愛玉凍品質之研究 國立台灣大學 農業化學研究所博士論文 民89
[48] 石正中 愛玉凍離水現象之研究 國立台灣大學園藝研究所碩士論文 民75
[49] Axelos, M. A. V. and Thibault, J.F. 1991. The Chemistry of low-methoxyl pectin gelation. In The Chemistry and Technology of Pectin. ed. by Walter, R.H. p.109. Academic Press, Inc. New York.
[50] Grant, G. T., Morris, E. R. Rees, D. A., Smith, P. J. C. and Thom, D. 1973. Biological interactions between polysaccharides and divalent cations:the egg-box model. FFBS Letters 32(1):195.
[51] Christensen, S. H. 1986. Pectins. In “food Hydrocolloids”,(ed.) M. Glicksman, Vol. 111, p.205. CRC Press, Inc. Florida
[52] 黃緯苓 電噴霧法製備硫化鎘及光電性質之研究 國立成功大學碩士論文 民93
[53] R. A. Pearman,陳世昌 譯,“固態工業電子學”,東華書局(1986)
[54] B. G. Streetman and S. Banerjee, Solid state electronic devices, 5th Editionm, NJ:Prenticce Hall(2000)
[55] N. M. Park, T. S. Kim, and S. J. Park, Appl. Phys. Lett., 78(17) (2001) 23
[56] M. V. Artemyev,S. V. Gaponenko, I. N. Germanenko, A. M. Kapitonov, Chem. Phys. Lett., 243 (1995) 450
[57] J. H. Davies, The physics of low-dimensional semiconductors, Published by the Press Syndicate of the University of Cambridge, p.1-3, 13, 46, 107 (1998)
[58] R. Rossetti, R. Hull, J. M. Gabson, and L. E. Brus, J. Chem. Phys., 83 (1985) 1406
[59] L. E. Brus, J. Chem. Phys., 79 (1983) 5566
[60] L. E. Brus, J. Chem. Phys., 80 (1984) 4403
[61] L. Brus, J. Quantum Electronics, 22 (1986) 1909
[62] The first reference to microwave temperature-jump experiments can be found in 1967. Later an improved modification of this method was reported: E. F. Caldin and J. P. Field, J. Chem. Soc. Faraday Trans., 1 (1982) 78 1923.
[63] S. W. Liu and J. P. Wightman, J. Appl. Chem. Biotechnol, 21 (1971) 168
[64] J. C. Jansen, A. Arafat, A. K. Barakat, H. Van Bekkum, Synthesis of Microporous Materials, 1 (1992) 507
[65] A. Arafat, J.C. Jansen, A.R. Ebaid, H.V. Bekkum, Zeolites, 13 (1993) 162
[66] C. G. Wu, T. Bein, Chem. Commun., (1996) 925
[67] S. Zijlstra, T. J. de Groot, L. P. Kok, G. M. Visser, W. Vaalburg, J. Org. Chem., 58 (1993) 1643
[68] M. D. Taylor, A. D. Roberts, R. Nickels, J. Nucl. Med. Biol., 23 (1996) 605
[69] D. Patil, B. Mutsuddy, R. Grrard, J. Microwave Power Electromagn. Eng., 27 (1992) 49
[70] C. C. Landry, A. R. Barron, Science, 260 (1993) 1653
[71] S. Komarneni, R. K. Rajha, H. Katuki, Mater. Chem. Phys., 61 (1999) 50
[72] R. Hicks, G. Majetich, J. Microwave Power Electromagn. Eng., 30 (1995) 27
[73] R. A. Abramovitch, Org. Prep. Proc. Int., 23 (1991) 283
[74] R. N. Gedye, W. Rank, K. C. Westaway, Can. J. Chem., 69 (1991) 706
[75] T. R. J. Dinesen, M.Y. Tse, M. C. Depew, J. K. S. Wan, Res. Chem. Intermed., 15 (1991) 113
[76] J. R. J. Pare, J. M. R. Belanger, S. S. Stafford, Trends Anal. Chem., 13 (1994) 176
[77] G. Bond, R.S. Moyes, D. A. Whan, Catal. Today, 17 (1993) 429
[78] A. G. Saskia, Chem. Soc. Rev., 26 (1997) 233
[79] W. Yuji, K. Hiromitsu, S. Takao, M. Hirotaro, S. Takayuki, K. Takayuki, Y. Shozo, Chem. Lett., 7 (1999)607
[80] D. L. Boxall, G. A. Deluga, E. A. Kenik, W. D. King, C. M. Lukehart, Chem. Mater., 13 (2001) 891
[81] K. W. Gallis, C. C. Landry, Adv. Mater., 13 (2001) 23
[82] A. Cirera, A. Vila, A. Dieguez, A. Cabot, A. Cornet, J.R. Morante, Sensors Actuators B, 64 (2000) 65
[83] D. L. Boxall, C. M. Lukehart, Chem. Mater., 13 (2001) 806.
[84] (a) O. Palchik, J. J. Zhu, A. Gedanken, J. Mater. Chem., 10 (2000) 1251; (b) O. Palchik, R. Kerner, J.J. Zhu, A. Gedanken, J. Solid State Chem., 154 (2000) 530; (c) O. Palchik, S. Avivi, D. Pinkert, A. Gedanken, Nanostruct. Mater., 11 (1999) 41; (d) J.J. Zhu, O. Palchik, S.G. Chen, A. Gedanken, J. Phys. Chem. B, 104 (2000) 7344
[85] J. A. Ayllon, A. M. Peiro, L. Saadoun, E. Vigil, X. Domenech, J. Peral, J. Mater. Chem., 10 (2000) 1911
[86] (a) X. H. Liao, J. M. Zhu, J. J. Zhu, J. Z. Xu, H. Y. Chen, Chem. Commun., (2001) 937; (b) J. J. Zhu, J. M. Zhu, X. H. Liao, J. L. Fang, M. G. Zhou, H. Y. Chen, Mater. Lett., 53 (2002) 12; (c) X. H. Liao, J. J. Zhu, W. Zhong, H. Y. Chen, Mater. Lett., 50 (2001) 341.
[87] W. Tu, H. Liu, J. Mater. Chem., 10 (2000) 2207
[88] J. C. Jansen, A. Arafat, A. K. Barakat, H. Van Bekkum, Synthesis of Microporous Materials, 1 (1992) 507
[89] S. Komarneni, R. Roy, Q. H. Li, Mater. Res. Bull., 27(12) (1992) 1393
[90] J. Zhu, O. Palchik, S. Chen, and A. Gedanken, J. Phys. Chem. B, 104 (2000) 7344
[91] Y. Wada, H. Kuramoto, J. Anand, T. Kitamura, T. Sakata, H. Mori, and S. Yanagida, J. Mater. Chem., 11 (2000) 1936
[92] J. J. Zhu, M. G. Zhou, J. Z. Xu, X. H. Liao, Mater. Lett., 47 (2000) 25
[93] X. H. Liao, J. J. Zhu, H. Y. Chen, Mater. Sci. Eng. B, 85 (2001) 85
[94] M. Cloupeau and B. Prunet-Foch(1998), J. Electrostatics, 22 (1989) 135
[95] J. Rosell-Llumpart and J. Fernandez De La Mora(1994), J. Aerosol Sci., 25(6) (1994) 1093
[96] M. Cloupeau and B. Prunet-Foch, J. Aerosol Sci., 25(6) (1994) 1021
[97] W. Franklins Myth, Trends in analytical chemistry, 18(5) (1999) 335
[98] Th. Dulcks and R. Juraschek, J. Aerosol Sci., 30(7) (1999) 927
[99] L. De Juan and J. Fernandez de La Mora, J. Colloid and Interface Science, 186 (1997) 280
[100] S. L. Kaufman, Special Issue on Ion Formation Mechanisms in Electrospray, Ed. S. Rutan and J. Fenn(1999)
[101] M. Cloupeau and B. Prunet-Foch, J. Electrostatics, 22 (1989) 135
[102] R. P. A. Hartman, D. J. Brunner, D.M.A. Camelot, J. C. M. Marjnissen, and B. Scarlett, J. Aerosol Sci., 31(1) (2000) 65
[103] Vonnegut B. and Neubauer R. L., J. Colloid Sci., 7 (1952) 616
[104] T. K. Burayev and I. P. Vereshchagin, Fluid Mech., Sov. Res., 1 (1972) 56
[105] C. H. Chen, M. H. J. Emond, E. M. Kelder, B. Meester, and J. Schoonman, J. Aerosol Sci., 30(7) (1999) 959
[106] Model 3080 Electrostatic Classifier Manual, TSI company
[107] D. R. Chen, D. Y. Pui, D. Hummes, H. Fissan, F. R. Quant and G. J. Sem, J. Aerosol Sci., 29(5/6) (1998) 497
[108] Model 3936, SMPS (Scanning Mobility Particle Sizer) Instruction Manual TSI Inc., (2002)
[109] Model 3080, Electrostatic Classifier Instruction Manual, TSI Inc., (2002)
[110] Model 3071A, Electrostatic Classifier, TSI company
[111] Model 3025A, Ultrafine Condensation Particle Counter Instruction Maunal, TSI Inc., (2002)
[112] Model 3077, Aerosol Neutralizer, TSI company
[113] A. Henglein, Chem. Rev., 89 (1989) 1861
[114] L. Spanhel, M. Haase, H. Weller, A. Henglein, J. Am. Chem. Soc., 109 (1987) 5649
[115] R. He et al., Colloids and Surfaces A: Physicochem. Eng. Aspects, 220 (2003) 151
[116] Y. Wang, A. Suna, W. Mahler, and R. Kasowski, J. Chem. Phys., 87(12) 1987 7315
[117] J. Lee and T. Tsakalalos, Nanostructure Materials, 8 (1997) 381
[118] K. Murakoshi, H. Hosokawa, M. Saitoh, Y. Wada, T. Sakata, H. Mori, M. Satoh, S. Yangagida, J. Chem. Soc. Faraday Trans., 94 (1998) 579